首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《科学通报》2021,66(18):2231-2244
聚类肽高分子是一种具有良好生物相容性的新型生物高分子材料.聚类肽高分子具有与聚肽高分子相似的主链结构,其取代基位于主链氮原子上,其主链上不含有手性中心和–NH···O=C–氢键相互作用.因此,聚类肽高分子具有较为柔顺的主链结构、良好的溶解性,以及优异的蛋白酶稳定性.此外,聚类肽高分子的性能主要由侧链结构和性质决定,通过对聚类肽高分子侧链结构的合理设计,可以有效调控其性能.聚类肽高分子具有类似蛋白质的主链结构,从而使其具有优良的生物相容性以及潜在的生物活性.本文首先对聚类肽高分子这类新型高分子材料进行了介绍,进一步对聚类肽高分子常用的合成方法、刺激响应性聚类肽高分子材料、分子自组装构筑新型微纳结构进行了概述,最后对聚类肽高分子在抗菌、防污涂层、基因转染、药物传递、以及诊疗学等生物医用领域的相关应用及其未来的发展进行了详细的总结阐述.  相似文献   

2.
大部分离子液体如果直接暴露在空气中都能吸收一些水分,而水会对离子液体的微观结构、物理化学性质等产生一定程度的影响,从而进一步影响离子液体的应用,因此有必要对离子液体的吸湿性开展系统深入的研究.本文评述了离子液体吸湿性研究领域的最新进展.通过对50多种离子液体的吸湿性的分析,总结了离子液体的结构因素和温度、湿度等外部因素对其吸湿性的影响,并对文献中提出的两步吸收机理和3类用于表征吸收过程参数进行了讨论,评述了基于实验数据的离子液体吸湿性分类标度.另外,离子液体的宏观吸湿性取决于其和水分子间的微观相互作用,关于这方面的研究已经比较多,本文简单综述了离子液体和水的分子间相互作用,和根据离子液体的氢键酸性和氢键碱性等参数预测离子液体吸水性的方法.随后,讨论了用二维相关光谱技术研究离子液体的吸湿过程的进展,认为该过程可以分成几个阶段,分别受不同的分子间作用力控制.根据相律,憎水性离子液体的水溶液可以用来调节相对湿度,而且鉴于醋酸根离子液体具有强的吸水性,一定条件下可以作为吸水剂来使用.  相似文献   

3.
离子液体作为绿色溶剂和催化剂在有机合成和催化反应中具有重要作用.酸性离子液体因同时拥有液体酸高密度的反应活性位和固体酸的不挥发性,近年来受到了广泛的关注.离子液体的酸性强度会影响化学反应的活性和作用位点的选择,测定离子液体的酸性强度对于认识酸催化反应机理、寻找合适的催化剂具有十分重要的指导意义.使用探针分子的分子光谱研究离子液体性质是一种重要的实验方法.本文主要介绍几种离子液体酸性的探针,着重介绍如何利用这些探针来测定离子液体的酸性强度.  相似文献   

4.
形状记忆高分子材料是一种能记住变形前形状,并在一定环境刺激下得到回复的智能材料.其独特的性质使其可以应用于生物医用、电线电缆、汽车工业、航空航天等领域.脂肪族聚酯以其优异的生物相容性、生物降解性,以及适合的热转变温度范围,在具有形状记忆功能的生物医用材料的设计开发中扮演着越来越重要的角色.本文重点介绍了以聚乳酸(PLA)、聚对二氧环己酮(PPDO)、聚丁二酸丁二醇酯(PBS)、聚十五烷酸酯(PPDL)和聚己内酯(PCL)等为基本组成链段,以物理交联和化学交联为网点结构的脂肪族聚酯共聚物、交联网络及互穿网络在形状记忆材料设计中的应用,阐述了链段拓扑结构对形状记忆行为的影响.  相似文献   

5.
随着人们对于离子液体参与自组装行为的重视,表面活性剂在其中构建溶致液晶的研究日益深入.选择离子液体作为组装介质,可将其优良特性引入到溶致液晶中,从而达到改善体系性质、扩展其应用范围的目的.本文总结了阳离子季铵盐类表面活性剂(常规单链、双链及Gemini型)、非离子表面活性剂(烷基聚氧乙醚类及植物甾醇类)及Pluronic双亲嵌段共聚物等在离子液体中自组装构建溶致液晶行为的研究进展,用可以反映溶剂内聚能密度的Gordon参数,对不同离子液体中形成溶致液晶的差异进行了分析,并对该领域的发展趋势进行了展望.  相似文献   

6.
《科学通报》2021,66(18):2217-2230
聚氨基酸是一类蛋白模拟物,近年来在诸多领域都有着广泛的应用.同天然的蛋白质一样,聚氨基酸的主链氢键作用也赋予其丰富的二级结构,而二级结构的调控对材料的功能以及组装等都有着十分重要的意义.本文结合聚氨基酸近几年的最新研究进展,分析了聚氨基酸二级结构的形成机制以及侧基功能化对二级结构的影响,总结了二级结构的影响因素,在此基础上,详细阐述了二级结构的调控方法,并探讨了二级结构的形成对穿膜、基因递送、抗菌性能、自组装行为以及蛋白修饰的影响.  相似文献   

7.
与常规的分子溶剂相比,离子液体具有良好的导电性、强的静电场、独特的微环境等特性,尤其是离子液体内部存在多重弱相互作用,同时对CO2有较高的溶解性和活化作用,使其在CO2的电化学催化还原研究中受到越来越广泛的关注.本文介绍了近年来关于离子液体调控CO2电化学催化转化制备CO、甲烷等化合物的研究进展.离子液体的介入,不仅可以明显降低CO2还原的过电位,还能提高CO2还原时的电流密度,特别是离子液体介质与固体、纳米或分子催化剂之间所产生的协同作用,提高了CO2催化转化的选择性.离子液体中电化学催化转化CO2是实现CO2大规模利用的可行路线.该研究的深入进行,对于加深对CO2的活化和离子液体本身以及离子液体+催化剂体系的认识具有重要科学和实际意义.  相似文献   

8.
离子液体在核燃料后处理中的应用   总被引:5,自引:0,他引:5  
核燃料后处理是核燃料循环的核心,对于核环境安全和核能的可持续发展意义重大.离子液体作为"新一代绿色溶剂"在核燃料后处理中具有广阔的潜在应用前景.离子液体可以替代易挥发的有机溶剂用于水法后处理萃取分离放射性核素,也可以替代强腐蚀性的高温熔盐用于干法后处理电解回收金属离子.本文在作者工作基础上总结了近年来离子液体用于核燃料水法和干法后处理的基础研究成果,归纳和分析了其中的关键科学问题.此外,由于核燃料后处理涉及强辐射应用环境,离子液体的辐射稳定性是其实际应用的前提和关键,因此本文还综述了国内外有关离子液体辐射效应的研究进展,评估了离子液体用于核燃料后处理的辐射化学可行性.最后,基于当前的研究现状和研究水平展望了离子液体在核燃料后处理应用方面的研究前景.  相似文献   

9.
封面说明     
正二氧化硫是一种大气污染物,其大量排放已经对人类健康和生态环境造成严重威胁.离子液体具有很多卓越的性能,其作为一种新型绿色溶剂,在气体分离领域具有广泛应用,被视为有前景的二氧化硫吸收剂,而调控离子液体的结构是改善气体捕集的关键.常规离子液体通过物理作用捕集二氧化硫的能力受到气体分压的影响,亨利常数的大小决定了这类离子液体的捕集性能.功能离子液体可以通过化学作用捕集低浓度条件下的二氧化硫,但作用  相似文献   

10.
近年来,化石燃料燃烧产生的二氧化硫(SO_2)对人类健康和生态环境造成严重威胁,如何有效捕集SO_2引起了国内外学者的广泛关注.离子液体作为一种新型绿色溶剂,具有蒸汽压低、液程宽、稳定性好、结构和性质可调节等特殊的性质,在气体分离领域得到了广泛的应用,被视为有前景的SO_2吸收剂.调节离子液体的结构,进一步改善离子液体的捕集性能,使其快速、高效、低耗、可逆地捕集烟气SO_2是研究的关键.本文综述了近年来离子液体捕集SO_2的研究进展,主要内容包括常规离子液体和功能离子液体,其中功能离子液体主要包括有机酸盐离子液体、含酚基阴离子或唑基阴离子的离子液体、含醚基或氨基的离子液体和多功能离子液体.同时,对目前该领域的发展所面临的主要问题和进一步的研究工作提出了建议.  相似文献   

11.
离子液体是指熔点低于100℃,完全由离子组成的一类有机熔融盐.由于离子液体独特的物理化学性质,离子液体参与的两亲分子自组装受到人们的广泛关注.本文简要综述了基于离子液体的两亲分子自组装的研究进展,主要包括离子液体作为新型溶剂,两亲分子在其中自组装形成的分子聚集体;长链离子液体作为表面活性剂构筑的分子聚集体;以及离子液体作为添加剂调控其他两亲分子聚集体的构筑.研究离子液体参与构筑的两亲分子聚集体,一方面可以将离子液体的特性引入到传统的分子聚集体中,有利于改善分子聚集体的性质,扩大其种类和应用范围,另一方面也可以进一步拓展离子液体自身的应用.  相似文献   

12.
生物镁锌合金体内对心肝肾脾的生物相容性   总被引:1,自引:0,他引:1  
骨内固定的可降解材料尚未涉及金属基材料, 机械性能差, 难以在骨承载部位发挥作用. 研制出全营养素组成的镁锌合金, 将其制成棒状物植入新西兰兔股骨髓腔, 旨在探讨该金属合金在体内是否能降解, 降解产物对骨、心、肝、肾和脾的功能影响. 将镁锌合金植入新西兰兔股骨远端髓腔, 与对侧仅建立骨隧道的股骨侧比较. 通过 X 光片、扫描电子显微镜和元素能谱分析镁锌合金降解机制; 测定外周血镁、肝肾功能和心肌酶谱含量, 将心、肝、肾和脾制成病理切片, 在组织学上分析材料对动物重要脏器及功能的影响. 结果表明镁锌合金在股骨髓腔内能降解, 术后14周约降解87%; 镁锌合金降解后血镁、肝肾功能和心肌酶谱与术前相比无统计学差异, 心、肝、肾和脾在组织学上的细胞结构无改变. 揭示镁锌合金在骨组织内能降解, 其降解产物对心、肝、肾和脾具有良好的生物相容性, 继续深入研究镁锌合金在体内体外的降解机制将给骨组织材料的选择提供新思路.  相似文献   

13.
典型环境及生物因子对商品化纳米银颗粒稳定性的影响   总被引:1,自引:0,他引:1  
纳米银在商品化产品中的广泛应用使其潜在环境风险备受关注.纳米银在环境中的危害程度与其在环境中的分散性以及颗粒稳定性密切相关.目前,关于纳米银稳定性的研究数据还非常匮乏.本文探讨了离子强度、价态、生物分子成分、pH等环境及生物因素对纳米银颗粒特征吸收峰、粒径、Zeta电位、银离子释放率等性质的影响.发现离子强度、价态、无...  相似文献   

14.
影响纳米材料毒性的关键因素   总被引:2,自引:0,他引:2  
徐莺莺  林晓影  陈春英 《科学通报》2013,(24):2466-2478
随着纳米技术的发展,越来越多的纳米产品开始进入人们的日常生活,纳米材料的毒性因此成为人们日渐关注的问题.近年来,纳米材料毒性的研究取得了很大进展,包括体内和体外实验研究纳米材料与生物大分子、细胞、器官和组织的相互作用以及其引起的毒性.纳米材料通过诱导氧化应激和炎症反应等机制产生一系列毒性效应.纳米材料本身的物理化学性质对其毒性有决定性的影响,这些性质包括尺寸、形状、表面电荷、化学组成、表面修饰、金属杂质、团聚与分散性、降解性能以及"蛋白冠"的形成.阐明物化性质对纳米材料毒性的影响,对于纳米材料的合理设计和安全应用具有重要的意义.本文对影响纳米材料毒性的关键因素进行了总结和分析,对近年来纳米材料毒性效应的研究进展进行了综述.  相似文献   

15.
赵成吉  卜凡哲  那辉 《科学通报》2019,64(2):中插6,172-179
成功合成了一个同时带有季铵基团和烷基溴的小分子(1-溴-6-(三甲基铵)己基溴化物),通过季铵化反应,将其接枝在三乙烯二胺季铵化的聚芳醚酮上,制备了带有柔性侧链且侧链上含有多季铵基团的聚芳醚酮(TQPAEK).利用溶液流延的方法,并经碱化处理制备得到OH~–型阴离子交换膜.通过改变起始聚合物的溴代度,可有效调控阴离子交换膜的离子交换容量,其范围在1.75~2.57meq/g.膜的溶胀度、吸水率与离子传导率均随着离子交换容量的增加而增大.该阴离子交换膜具有良好的热稳定性和机械性能,特别是柔性侧链的引入,显著地提高了聚合物膜的柔韧性,其断裂伸长率最高可达103.2%,拉伸强度仍在28MPa以上.引入多季铵化柔性侧链,有利于高局部离子基团的富集程度,在膜内形成了明显的相分离结构.80℃下最高离子电导率可达74.35mS/cm.这些结果表明多季铵化聚芳醚酮阴离子交换膜有望应用于燃料电池.  相似文献   

16.
薛博欣  郑吉富  张所波 《科学通报》2019,64(2):中插2,134-144
近年来,碱性阴离子交换膜燃料电池的发展得到了国内外研究人员的广泛关注,其中开发具有高碱稳定性的阴离子交换膜材料成为了研究的热点和难点.除了聚合物骨架,改善离子基团的稳定性对于阴离子交换膜材料整体稳定性的提高具有关键作用.胍盐离子作为一种新型的离子基团,分子结构中正电荷共轭分布在中心碳和3个氮原子上,电荷高度离域使得胍盐离子具有非常优异的热稳定性和化学稳定性,有望解决传统季铵盐离子在碱性条件下存在的降解问题.本文综述了近年来胍盐型阴离子交换膜材料的研究进展,其中包括胍盐阴离子交换膜材料的制备、分类以及胍盐离子的降解机理,同时对于耐碱型胍盐阴离子交换膜的结构设计进行了分析和展望.  相似文献   

17.
高莉  吴雪梅  焉晓明  宫雪  陈婉婷  李甜甜  贺高红 《科学通报》2019,64(2):中插3,145-152
碱性阴离子交换膜(AEMs)是碱性阴离子交换膜燃料电池的核心部件之一,目前已成为制约碱性阴离子交换膜燃料电池发展的关键因素.离子传导基团在碱性条件下,容易受到氢氧根离子的攻击发生降解.本文主要从以下3个方面介绍了近期AEMs在耐碱稳定性方面的研究成果:(1)开发稳定的离子传导基团,并通过提高离子传导基团的电子密度和增大缺电子位置的空间位阻提高离子基团的稳定性;(2)在离子传导基团与聚合物主链之间引入长烷基侧链;(3)合成不含醚氧键的聚合物主链,改善AEMs的耐碱稳定性.  相似文献   

18.
金属纳米材料因其大量生产和广泛使用而不可避免地会释放到环境中,给生态环境和人体健康造成潜在的负面影响.发展环境样品中金属纳米材料高效灵敏的分析测定方法,对于研究其在环境中的分布、转化、归趋、效应和生物安全性具有重要意义.研究表明,金属纳米材料组成、结构、形态和粒径分布等显著影响其环境过程和生物效应.因此,与传统的污染物分析不同,金属纳米材料分析不仅需要测定其化学组成和浓度,还需表征其粒径、形貌和表面电荷等.本文综述了近十年来关于环境中金属纳米材料的分离及测定的相关手段和方法,主要包括痕量金属纳米颗粒的萃取富集方法以及不同粒径纳米颗粒和相应金属离子的分离方法,并展望了发展前景.  相似文献   

19.
《科学通报》2021,66(18):2261-2275
肽基水凝胶作为一种可降解、生物相容性良好的生物材料,其氨基酸残基手性对水凝胶性能具有显著影响.一般情况下,在水凝胶骨架中引入D型氨基酸残基会增强水凝胶对蛋白酶水解的抵抗性,以及增强材料在宿主体内的免疫响应.同时,不同残基手性也会对细胞行为,如干细胞分化、骨修复,以及水凝胶的凝血、抗菌和抗肿瘤性能产生明显的影响.本文综述了近年来氨基酸残基手性在影响肽基水凝胶性能方面的研究,针对开环聚合获得的聚肽和缩合方法(包括固相合成)制备的寡肽与多肽等材料,重点阐述了氨基酸残基手性对肽分子及其水凝胶的二级结构、凝胶化性能、降解、免疫响应等性质,以及体外细胞行为、体内组织再生、抗菌性能和抗肿瘤作用等生物医学应用方面的影响.  相似文献   

20.
绿色电解质[BMIM]HCO3室温离子液体的合成及其物化性能   总被引:4,自引:0,他引:4  
以N-甲基咪唑为原料合成了[BMIM]HCO3室温离子液体, 对产物进行了表征, 测定了相关物化性能, 如密度、表面张力、黏度、电导率和电化学窗口等, 并考察了该离子液体的溶剂性能. 实验发现, 该离子液体作为电解质, 其电导率较高, 与温度的关系符合Arrhenius方程, 电化学窗口为3.3 V, 密度、表面张力、黏度均随温度升高而减小. 该离子液体与多数常规溶剂互溶, 并对金属氧化物具有较高的溶解度, 为在离子液体中直接电解金属氧化物奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号