首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The filamins are cytoplasmic proteins that regulate the structure and activity of the cytoskeleton by cross-linking actin into three-dimensional networks, linking the cell membrane to the cytoskeleton and serving as scaffolds on which intracellular signaling and protein trafficking pathways are organized (reviewed in refs. 1,2). We identified mutations in the gene encoding filamin B in four human skeletal disorders. We found homozygosity or compound heterozygosity with respect to stop-codon mutations in autosomal recessive spondylocarpotarsal syndrome (SCT, OMIM 272460) and missense mutations in individuals with autosomal dominant Larsen syndrome (OMIM 150250) and the perinatal lethal atelosteogenesis I and III phenotypes (AOI, OMIM 108720; AOIII, OMIM 108721). We found that filamin B is expressed in human growth plate chondrocytes and in the developing vertebral bodies in the mouse. These data indicate an unexpected role in vertebral segmentation, joint formation and endochondral ossification for this ubiquitously expressed cytoskeletal protein.  相似文献   

2.
Distal hereditary motor neuropathy (dHMN) or distal spinal muscular atrophy (OMIM #182960) is a heterogeneous group of disorders characterized by an almost exclusive degeneration of motor nerve fibers, predominantly in the distal part of the limbs. Silver syndrome (OMIM #270685) is a rare form of hereditary spastic paraparesis mapped to chromosome 11q12-q14 (SPG17) in which spasticity of the legs is accompanied by amyotrophy of the hands and occasionally also the lower limbs. Silver syndrome and most forms of dHMN are autosomal dominantly inherited with incomplete penetrance and a broad variability in clinical expression. A genome-wide scan in an Austrian family with dHMN-V (ref. 4) showed linkage to the locus SPG17, which was confirmed in 16 additional families with a phenotype characteristic of dHMN or Silver syndrome. After refining the critical region to 1 Mb, we sequenced the gene Berardinelli-Seip congenital lipodystrophy (BSCL2) and identified two heterozygous missense mutations resulting in the amino acid substitutions N88S and S90L. Null mutations in BSCL2, which encodes the protein seipin, were previously shown to be associated with autosomal recessive Berardinelli-Seip congenital lipodystrophy (OMIM #269700). We show that seipin is an integral membrane protein of the endoplasmic reticulum (ER). The amino acid substitutions N88S and S90L affect glycosylation of seipin and result in aggregate formation leading to neurodegeneration.  相似文献   

3.
Seckel syndrome (OMIM 210600) is an autosomal recessive disorder characterized by intrauterine growth retardation, dwarfism, microcephaly and mental retardation. Clinically, Seckel syndrome shares features in common with disorders involving impaired DNA-damage responses, such as Nijmegen breakage syndrome (OMIM 251260) and LIG4 syndrome (OMIM 606593). We previously mapped a locus associated with Seckel syndrome to chromosome 3q22.1-q24 in two consanguineous Pakistani families. Further marker analysis in the families, including a recently born unaffected child with a recombination in the critical region, narrowed the region to an interval of 5 Mbp between markers D3S1316 and D3S1557 (145.29 Mbp and 150.37 Mbp). The gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) maps to this region. A fibroblast cell line derived from an affected individual displays a defective DNA damage response caused by impaired ATR function. We identified a synonymous mutation in affected individuals that alters ATR splicing. The mutation confers a phenotype including marked microcephaly (head circumference 12 s.d. below the mean) and dwarfism (5 s.d. below the mean). Our analysis shows that UV-induced ATR activation can occur in non-replicating cells following processing by nucleotide excision repair.  相似文献   

4.
5.
A missense mutation in Tbce causes progressive motor neuronopathy in mice   总被引:1,自引:0,他引:1  
Mice that are homozygous with respect to the progressive motor neuronopathy (pmn) mutation (chromosome 13) develop a progressive caudio-cranial degeneration of their motor axons from the age of two weeks and die four to six weeks after birth. The mutation is fully penetrant, and expressivity does not depend on the genetic background. Based on its pathological features, the pmn mutation has been considered an excellent model for the autosomal recessive proximal childhood form of spinal muscular atrophy (SMA). Previously, we demonstrated that the genes responsible for these disorders were not orthologous. Here, we identify the pmn mutation as resulting in a Trp524Gly substitution at the last residue of the tubulin-specific chaperone e (Tbce) protein that leads to decreased protein stability. Electron microscopy of the sciatic and phrenic nerves of affected mice showed a reduced number of microtubules, probably due to defective stabilization. Transgenic complementation with a wildtype Tbce cDNA restored a normal phenotype in mutant mice. Our observations indicate that Tbce is critical for the maintenance of microtubules in mouse motor axons, and suggest that altered function of tubulin cofactors might be implicated in human motor neuron diseases.  相似文献   

6.
SIL1 (also called BAP) acts as a nucleotide exchange factor for the Hsp70 chaperone BiP (also called GRP78), which is a key regulator of the main functions of the endoplasmic reticulum. We found nine distinct mutations that would disrupt the SIL1 protein in individuals with Marinesco-Sj?gren syndrome, an autosomal recessive cerebellar ataxia complicated by cataracts, developmental delay and myopathy. Identification of SIL1 mutations implicates Marinesco-Sj?gren syndrome as a disease of endoplasmic reticulum dysfunction and suggests a role for this organelle in multisystem disorders.  相似文献   

7.
Troyer syndrome (TRS) is an autosomal recessive complicated hereditary spastic paraplegia (HSP) that occurs with high frequency in the Old Order Amish. We report mapping of the TRS locus to chromosome 13q12.3 and identify a frameshift mutation in SPG20, encoding spartin. Comparative sequence analysis indicates that spartin shares similarity with molecules involved in endosomal trafficking and with spastin, a molecule implicated in microtubule interaction that is commonly mutated in HSP.  相似文献   

8.
The genetic determinants of hair texture in humans are largely unknown. Several human syndromes exist in which woolly hair comprises a part of the phenotype; however, simple autosomal recessive inheritance of isolated woolly hair has only rarely been reported. To identify a gene involved in controlling hair texture, we performed genetic linkage analysis in six families of Pakistani origin with autosomal recessive woolly hair (ARWH; OMIM 278150). All six families showed linkage to chromosome 13q14.2-14.3 (Z = 17.97). In all cases, we discovered pathogenic mutations in P2RY5, which encodes a G protein-coupled receptor and is a nested gene residing within intron 17 of the retinoblastoma 1 (RB1) gene. P2RY5 is expressed in both Henle's and Huxley's layers of the inner root sheath of the hair follicle. Our findings indicate that disruption of P2RY5 underlies ARWH and, more broadly, uncover a new gene involved in determining hair texture in humans.  相似文献   

9.
Johanson-Blizzard syndrome (OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, multiple malformations such as nasal wing aplasia, and frequent mental retardation. We mapped the disease-associated locus to chromosome 15q14-21.1 and identified mutations, mostly truncating ones, in the gene UBR1 in 12 unrelated families with Johanson-Blizzard syndrome. UBR1 encodes one of at least four functionally overlapping E3 ubiquitin ligases of the N-end rule pathway, a conserved proteolytic system whose substrates include proteins with destabilizing N-terminal residues. Pancreas of individuals with Johanson-Blizzard syndrome did not express UBR1 and had intrauterine-onset destructive pancreatitis. In addition, we found that Ubr1(-/-) mice, whose previously reported phenotypes include reduced weight and behavioral abnormalities, had an exocrine pancreatic insufficiency, with impaired stimulus-secretion coupling and increased susceptibility to pancreatic injury. Our findings indicate that deficiency of UBR1 perturbs the pancreas' acinar cells and other organs, presumably owing to metabolic stabilization of specific substrates of the N-end rule pathway.  相似文献   

10.
ARC syndrome (OMIM 208085) is an autosomal recessive multisystem disorder characterized by neurogenic arthrogryposis multiplex congenita, renal tubular dysfunction and neonatal cholestasis with bile duct hypoplasia and low gamma glutamyl transpeptidase (gGT) activity. Platelet dysfunction is common. Affected infants do not thrive and usually die in the first year of life. To elucidate the molecular basis of ARC, we mapped the disease to a 7-cM interval on 15q26.1 and then identified germline mutations in the gene VPS33B in 14 kindreds with ARC. VPS33B encodes a homolog of the class C yeast vacuolar protein sorting gene, Vps33, that contains a Sec1-like domain important in the regulation of vesicle-to-target SNARE complex formation and subsequent membrane fusion.  相似文献   

11.
Intrauterine growth retardation is caused by maternal, fetal or placental factors that result in impaired endovascular trophoblast invasion and reduced placental perfusion. Although various causes of intrauterine growth retardation have been identified, most cases remain unexplained. Studying 29 families with 3-M syndrome (OMIM 273750), an autosomal recessive condition characterized by severe pre- and postnatal growth retardation, we first mapped the underlying gene to chromosome 6p21.1 and then identified 25 distinct mutations in the gene cullin 7 (CUL7). CUL7 assembles an E3 ubiquitin ligase complex containing Skp1, Fbx29 (also called Fbw8) and ROC1 and promotes ubiquitination. Using deletion analysis, we found that CUL7 uses its central region to interact with the Skp1-Fbx29 heterodimer. Functional studies indicated that the 3-M-associated CUL7 nonsense and missense mutations R1445X and H1464P, respectively, render CUL7 deficient in recruiting ROC1. These results suggest that impaired ubiquitination may have a role in the pathogenesis of intrauterine growth retardation in humans.  相似文献   

12.
Familial tumoral calcinosis (FTC; OMIM 211900) is a severe autosomal recessive metabolic disorder that manifests with hyperphosphatemia and massive calcium deposits in the skin and subcutaneous tissues. Using linkage analysis, we mapped the gene underlying FTC to 2q24-q31. This region includes the gene GALNT3, which encodes a glycosyltransferase responsible for initiating mucin-type O-glycosylation. Sequence analysis of GALNT3 identified biallelic deleterious mutations in all individuals with FTC, suggesting that defective post-translational modification underlies the disease.  相似文献   

13.
Epidermodysplasia verruciformis (OMIM 226400) is a rare autosomal recessive genodermatosis associated with a high risk of skin carcinoma that results from an abnormal susceptibility to infection by specific human papillomaviruses (HPVs). We recently mapped a susceptibility locus for epidermodysplasia verruciformis (EV1) to chromosome 17q25. Here we report the identification of nonsense mutations in two adjacent novel genes, EVER1 and EVER2, that are associated with the disease. The gene products EVER1 and EVER2 have features of integral membrane proteins and are localized in the endoplasmic reticulum.  相似文献   

14.
Anonychia and hyponychia congenita (OMIM 206800) are rare autosomal recessive conditions in which the only presenting phenotype is the absence or severe hypoplasia of all fingernails and toenails. After determining linkage to chromosome 20p13, we identified homozygous or compound heterozygous mutations in the gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, in eight affected families. Rspo4 expression was specifically localized to developing mouse nail mesenchyme at embryonic day 15.5, suggesting a crucial role in nail morphogenesis.  相似文献   

15.
16.
Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia   总被引:15,自引:0,他引:15  
Familial hypomagnesemia with secondary hypocalcemia (OMIM 602014) is an autosomal recessive disease that results in electrolyte abnormalities shortly after birth. Affected individuals show severe hypomagnesemia and hypocalcemia, which lead to seizures and tetany. The disorder has been thought to be caused by a defect in the intestinal absorption of magnesium, rather than by abnormal renal loss of magnesium. Restoring the concentrations of serum magnesium to normal values by high-dose magnesium supplementation can overcome the apparent defect in magnesium absorption and in serum concentrations of calcium. Life-long magnesium supplementation is required to overcome the defect in magnesium handling by these individuals. We previously mapped the gene locus to chromosome 9q in three large inbred kindreds from Israel. Here we report that mutation of TRPM6 causes hypomagnesemia with secondary hypocalcemia and show that individuals carrying mutations in this gene have abnormal renal magnesium excretion.  相似文献   

17.
18.
Mutational inactivation of the gene WRN causes Werner syndrome, an autosomal recessive disease characterized by premature aging, elevated genomic instability and increased cancer incidence. The capacity of enforced telomerase expression to rescue premature senescence of cultured cells from individuals with Werner syndrome and the lack of a disease phenotype in Wrn-deficient mice with long telomeres implicate telomere attrition in the pathogenesis of Werner syndrome. Here, we show that the varied and complex cellular phenotypes of Werner syndrome are precipitated by exhaustion of telomere reserves in mice. In late-generation mice null with respect to both Wrn and Terc (encoding the telomerase RNA component), telomere dysfunction elicits a classical Werner-like premature aging syndrome typified by premature death, hair graying, alopecia, osteoporosis, type II diabetes and cataracts. This mouse model also showed accelerated replicative senescence and accumulation of DNA-damage foci in cultured cells, as well as increased chromosomal instability and cancer, particularly nonepithelial malignancies typical of Werner syndrome. These genetic data indicate that the delayed manifestation of the complex pleiotropic of Wrn deficiency relates to telomere shortening.  相似文献   

19.
20.
Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13 p12 (BBS3), 15q22.3 q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号