首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
D M Papazian  L C Timpe  Y N Jan  L Y Jan 《Nature》1991,349(6307):305-310
Voltage-dependent potassium, sodium and calcium ion channels may share a common mechanism of activation, in which the conserved S4 sequence acts as the primary voltage sensor. Site-directed mutagenesis of the S4 sequence of the Shaker potassium channel and electrophysiological analysis suggest that voltage-dependent activation involves the S4 sequence but is not solely due to electrostatic interactions.  相似文献   

2.
Cha A  Snyder GE  Selvin PR  Bezanilla F 《Nature》1999,402(6763):809-813
Voltage-gated ion channels are transmembrane proteins that are essential for nerve impulses and regulate ion flow across cell membranes in response to changes in membrane potential. They are made up of four homologous domains or subunits, each of which contains six transmembrane segments. Studies of potassium channels have shown that the second (S2) and fourth (S4) segments contain several charged residues, which sense changes in voltage and form part of the voltage sensor. Although these regions clearly undergo conformational changes in response to voltage, little is known about the nature of these changes because voltage-dependent distance changes have not been measured. Here we use lanthanide-based resonance energy transfer to measure distances between Shaker potassium channel subunits at specific residues. Voltage-dependent distance changes of up to 3.2 A were measured at several sites near the S4 segment. These movements directly correlated with electrical measurements of the voltage sensor, establishing the link between physical changes and electrical charge movement. Measured distance changes suggest that the region associated with the S4 segment undergoes a rotation and possible tilt, rather than a large transmembrane movement, in response to voltage. These results demonstrate the first in situ measurement of atomic scale movement in a trans-membrane protein.  相似文献   

3.
Starace DM  Bezanilla F 《Nature》2004,427(6974):548-553
Voltage-dependent potassium channels are essential for the generation of nerve impulses. Voltage sensitivity is conferred by charged residues located mainly in the fourth transmembrane segment (S4) of each of the four identical subunits that make up the channel. These charged segments relocate when the potential difference across the membrane changes, controlling the ability of the pore to conduct ions. In the crystal structure of the Aeropyrum pernix potassium channel KvAP, the S4 and part of the third (S3B) transmembrane alpha-helices are connected by a hairpin turn in an arrangement termed the 'voltage-sensor paddle'. This structure was proposed to move through the lipid bilayer during channel activation, transporting positive charges across a large fraction of the membrane. Here we show that replacing the first S4 arginine by histidine in the Shaker potassium channel creates a proton pore when the cell is hyperpolarized. Formation of this pore does not support the paddle model, as protons would not have access to a lipid-buried histidine. We conclude that, at hyperpolarized potentials, water and protons from the internal and external solutions must be separated by a narrow barrier in the channel protein that focuses the electric field to a small voltage-sensitive region.  相似文献   

4.
R L Rosenberg  J E East 《Nature》1992,360(6400):166-169
The functional activity of ion channels and other membrane proteins requires that the proteins be correctly assembled in a transmembrane configuration. Thus, the functional expression of ion channels, neurotransmitter receptors and complex membrane-limited signalling mechanisms from complementary DNA has required the injection of messenger RNA or transfection of DNA into Xenopus oocytes or other target cells that are capable of processing newly translated protein into the surface membrane. These approaches, combined with voltage-clamp analysis of ion channel currents, have been especially powerful in the identification of structure-function relationships in ion channels. But oocytes express endogenous ion channels, neurotransmitter receptors and receptor-channel subunits, complicating the interpretation of results in mRNA-injected eggs. Furthermore, it is difficult to control experimentally the membrane lipids and post-translational modifications that underlie the regulation and modulation of ion channels in intact cells. A cell-free system for ion channel expression is ideal for good experimental control of protein expression and modulatory processes. Here we combine cell-free protein translation, microsomal membrane processing of nascent channel proteins, and reconstitution of newly synthesized ion channels into planar lipid bilayers to synthesize, glycosylate, process into membranes, and record in vitro the activity of functional Shaker potassium channels.  相似文献   

5.
Posson DJ  Ge P  Miller C  Bezanilla F  Selvin PR 《Nature》2005,436(7052):848-851
Voltage-gated ion channels open and close in response to voltage changes across electrically excitable cell membranes. Voltage-gated potassium (Kv) channels are homotetramers with each subunit constructed from six transmembrane segments, S1-S6 (ref. 2). The voltage-sensing domain (segments S1-S4) contains charged arginine residues on S4 that move across the membrane electric field, modulating channel open probability. Understanding the physical movements of this voltage sensor is of fundamental importance and is the subject of controversy. Recently, the crystal structure of the KvAP channel motivated an unconventional 'paddle model' of S4 charge movement, indicating that the segments S3b and S4 might move as a unit through the lipid bilayer with a large (15-20-A) transmembrane displacement. Here we show that the voltage-sensor segments do not undergo significant transmembrane translation. We tested the movement of these segments in functional Shaker K+ channels by using luminescence resonance energy transfer to measure distances between the voltage sensors and a pore-bound scorpion toxin. Our results are consistent with a 2-A vertical displacement of S4, not the large excursion predicted by the paddle model. This small movement supports an alternative model in which the protein shapes the electric field profile, focusing it across a narrow region of S4 (ref. 6).  相似文献   

6.
R MacKinnon 《Nature》1991,350(6315):232-235
The voltage-activated K+, Na+ and Ca2+ channels are responsible for the generation and propagation of electrical signals in cell membranes. The K+ channels are multimeric membrane proteins formed by the aggregation of an unknown number of independent subunits. By studying the interaction of a scorpion toxin with coexpressed wild-type and toxin-insensitive mutant Shaker K+ channels, the subunit stoichiometry can be determined. The Shaker K+ channel is found to have a tetrameric structure. This is consistent with the sequence relationship between a K+ channel and each of the four internally homologous repeats of Na+ and Ca2+ channels.  相似文献   

7.
del Camino D  Holmgren M  Liu Y  Yellen G 《Nature》2000,403(6767):321-325
The structure of the bacterial potassium channel KcsA has provided a framework for understanding the related voltage-gated potassium channels (Kv channels) that are used for signalling in neurons. Opening and closing of these Kv channels (gating) occurs at the intracellular entrance to the pore, and this is also the site at which many open channel blockers affect Kv channels. To learn more about the sites of blocker binding and about the structure of the open Kv channel, we investigated here the ability of blockers to protect against chemical modification of cysteines introduced at sites in transmembrane segment S6, which contributes to the intracellular entrance. Within the intracellular half of S6 we found an abrupt cessation of protection for both large and small blockers that is inconsistent with the narrow 'inner pore' seen in the KcsA structure. These and other results are most readily explained by supposing that the structure of Kv channels differs from that of the non-voltage-gated bacterial channel by the introduction of a sharp bend in the inner (S6) helices. This bend would occur at a Pro-X-Pro sequence that is highly conserved in Kv channels, near the site of activation gating.  相似文献   

8.
Chanda B  Asamoah OK  Blunck R  Roux B  Bezanilla F 《Nature》2005,436(7052):852-856
Voltage-gated ion channels are responsible for generating electrical impulses in nerves and other excitable cells. The fourth transmembrane helix (S4) in voltage-gated channels is the primary voltage-sensing unit that mediates the response to a changing membrane electric field. The molecular mechanism of voltage sensing, particularly with respect to the magnitude of the transmembrane movement of S4, remains controversial. To determine the extent of this transmembrane movement, we use fluorescent resonance energy transfer between the S4 domain and a reference point in the lipid bilayer. The lipophilic ion dipicrylamine distributes on either side of the lipid bilayer depending on the membrane potential, and is used here as a resonance-energy-transfer acceptor from donor molecules attached to several positions in the Shaker K+ channel. A voltage-driven transmembrane movement of the donor should produce a transient fluorescence change because the acceptor also translocates as a function of voltage. In Shaker K+ channels no such transient fluorescence is observed, indicating that the S4 segment does not translocate across the lipid bilayer. Based on these observations, we propose a molecular model of voltage gating that can account for the observed 13e gating charge with limited transmembrane S4 movement.  相似文献   

9.
Männikkö R  Elinder F  Larsson HP 《Nature》2002,419(6909):837-841
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) ion channels are found in rhythmically firing cells in the brain and in the heart, where the cation current through HCN channels (called I(h) or I(f)) causes these cells to fire repeatedly. These channels are also found in non-pacing cells, where they control resting membrane properties, modulate synaptic transmission, mediate long-term potentiation, and limit extreme hyperpolarizations. HCN channels share sequence motifs with depolarization-activated potassium (Kv) channels, such as the fourth transmembrane segment S4. S4 is the main voltage sensor of Kv channels, in which transmembrane movement of S4 charges triggers the opening of the activation gate. Here, using cysteine accessibility methods, we investigate whether S4 moves in an HCN channel. We show that S4 movement is conserved between Kv and HCN channels, which indicates that S4 is also the voltage sensor in HCN channels. Our results suggest that a conserved voltage-sensing mechanism operates in the oppositely voltage-gated Kv and HCN channels, but that there are different coupling mechanisms between the voltage sensor and activation gate in the two different channels.  相似文献   

10.
E Y Isacoff  Y N Jan  L Y Jan 《Nature》1990,345(6275):530-534
Potassium channels show a wide range of functional diversity. Nerve cells typically express a number of K+ channels that differ in their kinetics, single-channel conductance, pharmacology, and sensitivity to voltage and second messengers. The cloning of the Shaker gene in Drosophila, and of related genes, has revealed that the encoded K+ channel polypeptides resemble one of the four internally homologous domains of the alpha-subunits of Na+ channels and Ca2+ channels, indicating that K+ channels may form by the co-assembly of several polypeptides. In this report we provide evidence that the Shaker A-type K+ channels expressed in Xenopus oocytes contain several Shaker polypeptides, that heteromultimeric channels may form through assembly of different channel polypeptides, that the kinetics or pharmacology of some heteromultimeric channels differ from those of homomultimeric channels, and that channel polypeptides from the fruit fly can co-assemble with homologous polypeptides from the rat. We suggest that heteromultimer formation may increase K+ channel diversity beyond even the level expected from the large number of K+ channel genes and alternative splicing products.  相似文献   

11.
Glauner KS  Mannuzzu LM  Gandhi CS  Isacoff EY 《Nature》1999,402(6763):813-817
Voltage-gated ion channels underlie the generation of action potentials and trigger neurosecretion and muscle contraction. These channels consist of an inner pore-forming domain, which contains the ion permeation pathway and elements of its gates, together with four voltage-sensing domains, which regulate the gates. To understand the mechanism of voltage sensing it is necessary to define the structure and motion of the S4 segment, the portion of each voltage-sensing domain that moves charged residues across the membrane in response to voltage change. We have addressed this problem by using fluorescence resonance energy transfer as a spectroscopic ruler to determine distances between S4s in the Shaker K+ channel in different gating states. Here we provide evidence consistent with S4 being a tilted helix that twists during activation. We propose that helical twist contributes to the movement of charged side chains across the membrane electric field and that it is involved in coupling voltage sensing to gating.  相似文献   

12.
Webster SM  Del Camino D  Dekker JP  Yellen G 《Nature》2004,428(6985):864-868
Voltage-gated potassium channels such as Shaker help to control electrical signalling in neurons by regulating the passage of K+ across cell membranes. Ion flow is controlled by a voltage-dependent gate at the intracellular side of the pore, formed by the crossing of four alpha-helices--the inner-pore helices. The prevailing model of gating is based on a comparison of the crystal structures of two bacterial channels--KcsA in a closed state and MthK in an open state--and proposes a hinge motion at a conserved glycine that splays the inner-pore helices wide open. We show here that two types of intersubunit metal bridge, involving cysteines placed near the bundle crossing, can occur simultaneously in the open state. These bridges provide constraints on the open Shaker channel structure, and on the degree of movement upon opening. We conclude that, unlike predictions from the structure of MthK, the inner-pore helices of Shaker probably maintain the KcsA-like bundle-crossing motif in the open state, with a bend in this region at the conserved proline motif (Pro-X-Pro) not found in the bacterial channels. A narrower opening of the bundle crossing in Shaker K+ channels may help to explain why Shaker has an approximately tenfold lower conductance than its bacterial relatives.  相似文献   

13.
Alabi AA  Bahamonde MI  Jung HJ  Kim JI  Swartz KJ 《Nature》2007,450(7168):370-375
Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from an archaebacterial voltage-activated potassium channel (KvAP) or voltage-sensing domain proteins (Hv1 and Ci-VSP) into eukaryotic voltage-activated potassium channels. Tarantula toxins that partition into membranes can interact with these paddle motifs at the protein-lipid interface and similarly perturb voltage-sensor activation in both ion channels and proteins with a voltage-sensing domain. Our results show that paddle motifs are modular, that their functions are conserved in voltage sensors, and that they move in the relatively unconstrained environment of the lipid membrane. The widespread targeting of voltage-sensor paddles by toxins demonstrates that this modular structural motif is an important pharmacological target.  相似文献   

14.
Tombola F  Pathak MM  Gorostiza P  Isacoff EY 《Nature》2007,445(7127):546-549
Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD. Neither mechanism is well understood. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions ('omega current') in the resting conformation ('S4 down'). Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.  相似文献   

15.
Voltage-sensing residues in the S4 region of a mammalian K+ channel   总被引:13,自引:0,他引:13  
E R Liman  P Hess  F Weaver  G Koren 《Nature》1991,353(6346):752-756
The ability of ion-channel proteins to respond to a change of the transmembrane voltage is one of the basic mechanisms underlying electrical excitability of nerve and muscle membranes. The voltage sensor has been postulated to be the fourth putative transmembrane segment (S4) of voltage-activated Na+, Ca2+ and K+ channels. Mutations of positively charged residues within S4 alter gating of Na and Shaker-type K+ channels, but quantitative correlations between the charge or a residue in S4 and the gating valence of the channel have not yet been established. Here, with improved resolution of the voltage dependence of steady-state activation, we present estimates of the equivalent gating valence with sufficient precision to allow quantitative examination of the contribution of individual charged residues to the gating valence of a mammalian non-inactivating K+ channel. We conclude that at least part of the gating charge associated with channel activation is indeed contributed by charged residues within the S4 segment.  相似文献   

16.
Murata Y  Iwasaki H  Sasaki M  Inaba K  Okamura Y 《Nature》2005,435(7046):1239-1243
Changes in membrane potential affect ion channels and transporters, which then alter intracellular chemical conditions. Other signalling pathways coupled to membrane potential have been suggested but their underlying mechanisms are unknown. Here we describe a novel protein from the ascidian Ciona intestinalis that has a transmembrane voltage-sensing domain homologous to the S1-S4 segments of voltage-gated channels and a cytoplasmic domain similar to phosphatase and tensin homologue. This protein, named C. intestinalis voltage-sensor-containing phosphatase (Ci-VSP), displays channel-like 'gating' currents and directly translates changes in membrane potential into the turnover of phosphoinositides. The activity of the phosphoinositide phosphatase in Ci-VSP is tuned within a physiological range of membrane potential. Immunocytochemical studies show that Ci-VSP is expressed in Ciona sperm tail membranes, indicating a possible role in sperm function or morphology. Our data demonstrate that voltage sensing can function beyond channel proteins and thus more ubiquitously than previously realized.  相似文献   

17.
18.
Grabe M  Lai HC  Jain M  Jan YN  Jan LY 《Nature》2007,445(7127):550-553
Voltage-gated potassium (Kv) channels, essential for regulating potassium uptake and cell volume in plants and electrical excitability in animals, switch between conducting and non-conducting states as a result of conformational changes in the four voltage-sensing domains (VSDs) that surround the channel pore. This process, known as gating, is initiated by a cluster of positively charged residues on the fourth transmembrane segment (S4) of each VSD, which drives the VSD into a 'down state' at negative voltages and an 'up state' at more positive voltages. The crystal structure of Kv1.2 probably corresponds to the up state, but the local environment of S4 in the down state and its motion in voltage gating remains unresolved. Here we employed several conditional lethal/second-site suppressor yeast screens to determine the transmembrane packing of the VSD in the down state. This screen relies on the ability of KAT1, a eukaryotic Kv channel, to conduct potassium when its VSDs are in the down state, thereby rescuing potassium-transport-deficient yeast. Starting with KAT1 channels bearing conditional lethal mutations, we identified second-site suppressor mutations throughout the VSD that recover yeast growth. We then constructed a down state model of the channel using six pairs of interacting residues as structural constraints and verified this model by engineering suppressor mutations on the basis of spatial considerations. A comparison of this down state model with the up state Kv1.2 structure suggests that the VSDs undergo large rearrangements during gating, whereas the S4 segment remains positioned between the central pore and the remainder of the VSD in both states.  相似文献   

19.
E Y Isacoff  Y N Jan  L Y Jan 《Nature》1991,353(6339):86-90
Inactivation of ion channels is important in the control of membrane excitability. For example, delayed-rectifier K+ channels, which regulate action potential repolarization, are inactivated only slowly, whereas A-type K+ channels, which affect action potential duration and firing frequency, have both fast and slow inactivation. Fast inactivation of Na+ and K+ channels may result from the blocking of the permeation pathway by a positively charged cytoplasmic gate such as the one encoded by the first 20 amino acids of the Shaker B (ShB) K+ channel. We report here that mutation of five highly conserved residues between the proposed membrane-spanning segments S4 and S5 (also termed H4) of ShB affects the stability of the inactivated state and alters channel conductance. One such mutation stabilizes the inactivated state of ShB as well as the inactivated state induced in the delayed-rectifier type K+ channel drk1 by the cytoplasmic application of the ShB N-terminal peptide. The S4-S5 loop, therefore, probably forms part of a receptor for the inactivation gate and lies near the channel's permeation pathway.  相似文献   

20.
Heteromultimeric channels formed by rat brain potassium-channel proteins   总被引:27,自引:0,他引:27  
An important step towards understanding the molecular basis of the functional diversity of voltage-gated K+ channels in the mammalian brain has been the discovery of a family of genes encoding rat brain K+ channel-forming (RCK) proteins. All species of these RCK proteins form homomultimeric voltage-gated K+ channels with distinct functional characteristics in Xenopus laevis oocytes following injection of the respective cRNAs. RCK-specific mRNAs are coexpressed in several regions of the brain, suggesting that RCK proteins also assemble into heteromultimeric K+ channels. In addition expression experiments with fractionated poly(A)+ mRNA have suggested that heteromultimeric K+ channels may occur in mammalian brain. We report here that heteromultimeric K+ channels composed of two different RCK proteins (RCK1 and RCK4) assemble after cotransfection of HeLa cells with the corresponding cDNAs and after coinjection of the corresponding cRNAs into Xenopus oocytes. The heteromultimeric RCK1, 4 channel mediates a transient potassium outward current, similar to the RCK4 channel but inactivates more slowly, has a larger conductance and is more sensitive to block by dendrotoxin and tetraethylammonium chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号