首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reggies (flotillins) are detergent-resistant microdomains involved in the scaffolding of large heteromeric complexes that signal across the plasma membrane. Based on the presence of an evolutionarily widespread motif, reggies/flotillins have been included within the SPFH (stomatin-prohibitin-flotillin-HflC/K) protein superfamily. To better understand the origin and evolution of reggie/flotillin structure and function, we searched databases for reggie/flotillin and SPFH-like proteins in organisms at the base and beyond the animal kingdom, and used the resulting dataset to compare their structural and functional domains. Our analysis shows that the SPFH grouping has little phylogenetic support, probably due to convergent evolution of its members. We also find that reggie/flotillin homologues are highly conserved among metazoans but are absent in plants, fungi and bacteria, where only proteins with ‘reggie-like’ domains can be found. However, despite their low sequence similarities, reggie/flotillin and ‘reggie-like’ domains appear to subserve related functions, suggesting that their basic biological role was acquired independently during evolution. Received 21 September 2005; received after revision 14 November 2005; accepted 21 November 2005  相似文献   

2.
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.  相似文献   

3.
Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the “annexin core”, which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.  相似文献   

4.
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.  相似文献   

5.
P-glycoprotein (P-gp) is an active membrane transporter responsible for cell detoxification against numerous amphiphilic compounds, leading to multidrug resistance in tumor cells. It displays entangled connections with its membrane environment since it recognizes its substrates within the cytosolic leaflet and it also translocates some endogenous lipids to the exoplasmic leaflet. Regarding its relationships with membrane microdomains, ‘lipid rafts’, a literature analysis concludes that (i) P-gp also exists in rafts and non-raft membrane domains, depending on the cell considered, the experimental conditions and the method used to test it; (ii) cholesterol has a positive influence on P-gp function, and this may be a direct effect of the free cholesterol present in membrane or an indirect effect mediated by the cholesterol-enriched microdomains; (iii) when present in rafts, P-gp interacts with protein partners regulating its activity; (iv) P-gp is a lipid translocase that handles the raft-constituting lipids with particular efficiency, and it also influences membrane trafficking in the cell. Received 18 November 2005; received after revision 23 December 2005; accepted 12 January 2006  相似文献   

6.
The two primary photoreceptor-specific tetraspanins are retinal degeneration slow (RDS) and rod outer segment membrane protein-1 (ROM-1). These proteins associate together to form different complexes necessary for the proper structure of the photoreceptor outer segment rim region. Mutations in RDS cause blinding retinal degenerative disease in both rods and cones by mechanisms that remain unknown. Tetraspanins are implicated in a variety of cellular processes and exert their function via the formation of tetraspanin-enriched microdomains. This review focuses on correlations between RDS and other members of the tetraspanin superfamily, particularly emphasizing protein structure, complex assembly, and post-translational modifications, with the goal of furthering our understanding of the structural and functional role of RDS and ROM-1 in outer segment morphogenesis and maintenance, and our understanding of the pathogenesis associated with RDS and ROM-1 mutations.  相似文献   

7.
Lipid sensing and lipid sensors   总被引:2,自引:0,他引:2  
Specialized lipid microdomains in the cell plasma membrane, referred to as 'lipid rafts', are enriched in sphingolipids and cholesterol and have drawn considerable interest as platforms for the recruitment of signaling molecules. Despite numerous biochemical and cellular studies, debate persists on the size, lifetime and even the existence of lipid rafts, emphasizing the need for reliable lipid probes to study in situ membrane lipid organization. In this review, we summarize our recent data on living cells using two specific probes of raft components: lysenin, a sphingomyelin- binding protein and the fluorescein ester of poly(ethyleneglycol)cholesteryl ether that labels cholesterol-rich domains. Sphingomyelin-rich domains that are spatially and functionally distinct from the GM1 ganglioside-rich domains were found at the plasma membrane of Jurkat T cells. In addition, the dynamics of cholesterol-rich domains could be monitored at the cell surface as well as inside the cells.  相似文献   

8.
Sphingolipids in mammalian cell signalling   总被引:12,自引:0,他引:12  
Sphingolipids and their metabolites, ceramide, sphingosine and sphingosine-1-phosphate, are involved in a variety of cellular processes including differentiation, cellular senescence, apoptosis and proliferation. Ceramide is the main second messenger, and is produced by sphingomyelinase-induced hydrolysis of sphingomyelin and by de novo synthesis. Many stimuli, e.g. growth factors, cytokines, G protein-coupled receptor agonists and stress (UV irradiation) increase cellular ceramide levels. Sphingomyelin in the plasma membrane is located primarily in the outer (extracellular) leaflet of the bilayer, whilst sphingomyelinases are found at the inner (cytosolic) face and within lysosomes/endosomes. Such cellular compartmentalisation restricts the site of ceramide production and subsequent interaction with target proteins. Glycosphingolipids and sphingomyelin together with cholesterol are major components of specialised membrane microdomains known as lipid rafts, which are involved in receptor aggregation and immune responses. Many signalling molecules, for example Src family tyrosine kinases and glycosylinositolphosphate-anchored proteins, are associated with rafts, and disruption of these domains affects cellular responses such as apoptosis. Sphingosine and sphingosine-1-phosphate derived from ceramide are also signalling molecules. In particular, sphingosine-1-phosphate is involved in proliferation, differentiation and apoptosis. Sphingosine-1-phosphate can act both extracellularly through endothelial-differentiating gene (EDG) family G protein-coupled receptors and intracellularly through direct interactions with target proteins. The importance of sphingolipid signalling in cardiovascular development has been reinforced by recent reports implicating EDG receptors in the regulation of embryonic cardiac and vascular morphogenesis. Received 16 May 2001; received after revision 29 June 2001; accepted 3 July 2001  相似文献   

9.
The cytosolic lipid-binding proteins (cLBPs) comprise a large family of small (14-15 kDa) intracellular proteins involved in the transport of small lipids, including fatty acids and retinoids within cells. Their presumed function is to solubilise, protect from chemical damage and deliver to the correct destination lipids for purposes ranging from energy metabolism (e.g. fatty acids) to signalling, gene activation and cellular differentiation (e.g. retinoids and eicosanoids). It is therefore probable that cLBPs interact directly with cellular components (membranes and/or proteins) to collect and deposit their ligands, and some external features of the different cLBPs may be involved in such interactions and determine which cellular component (integral membrane or cytosolic proteins, or membranes of different lipid compositions or domain structures) with which a given cLBP will interact. Here we have focussed on a previously unrecognised feature of cLBPs which descriminates between those for which there is empiral evidence for direct interaction with membranes, and those which do not. This is a group of bulky hydrophobic amino acid side chains (e.g. tryptophans, phenylalanines, leucines) which project directly into solvent adjacent to the portal of entry and exit of the lipid ligands. Such side chains are usually found internal to proteins, but are common at sites of protein:protein or protein:membrane interactions. These 'sticky fingers' could therefore be critical to the nature and specificity of the interactions cLBPs undergo in the web of cross-traffic in lipid movements within cells.  相似文献   

10.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.  相似文献   

11.
In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions.  相似文献   

12.
Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP–VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP–VAP association, alters the subcellular targeting of ORP–VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP–VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER–lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP–VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.  相似文献   

13.
Translation of nutrient stimuli through intracellular signaling is important for adaptation and regulation of metabolic processes, while deregulation by either genetic or environmental factors predisposes towards the development of metabolic disorders. Besides providing energy, fatty acids act as prominent signaling molecules by altering cell membrane structures, affecting the lipid modification status of proteins, and by modulating ligand-activated nuclear receptor activity. Given their highly hydrophobic nature, fatty acids in the aqueous intracellular compartment are bound to small intracellular lipid binding proteins which function as intracellular carriers of these hydrophobic components. This review describes recent advances in identifying intracellular pathways for cytosolic fatty acid signaling through ligand activated receptors by means of small intracellular lipid binding proteins. The mechanism behind intracellular fatty acid transport and subsequent nuclear receptor activation is an emerging concept, and advances in understanding this process provide new potential therapeutic targets towards the treatment of metabolic disorders.  相似文献   

14.
15.
The function of apolipoproteins L   总被引:1,自引:0,他引:1  
The function of the proteins of the apolipoprotein L (apoL) family is largely unknown. These proteins are classically thought to be involved in lipid transport and metabolism, mainly due to the initial discovery that a secreted member of the family, apoL-I, is associated with high-density lipoprotein particles. However, the other members of the family are believed to be intracellular. The recent unravelling of the mechanism by which apoL-I kills African trypanosomes, as well as the increasing evidence for modulation of apoL expression in various pathological processes, provides new insights about the functions of these proteins. ApoLs share structural and functional similarities with proteins of the Bcl-2 family. Based on the activity of apoL-I in trypanosomes and the comparison with Bcl-2 proteins, we propose that apoLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. Received 28 February 2006; received after revision 18 May 2006; accepted 2 June 2006  相似文献   

16.
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.  相似文献   

17.
18.
Vesicle fusion is a ubiquitous biological process involved in membrane trafficking and a variety of specialised events such as exocytosis and neurite outgrowth. The energy to drive biological membrane fusion is provided by fusion proteins called SNAREs. Indeed, SNARE proteins play critical roles in neuronal development as well as neurotransmitter and hormone release. SNARE proteins form a very tight alpha-helical bundle that can pull two membranes together, thereby initiating fusion. Whereas a great deal of attention has been paid to partner proteins that can affect SNARE function, recent genetic and biochemical evidence suggests that local lipid environment may be as important in SNARE regulation. Direct lipid modification of SNARE fusion proteins and their regulation by fatty acids following phospholipase action will be discussed here in detail. Our analysis highlights the fact that lipids are not a passive platform in vesicle fusion but intimately regulate SNARE function. Received 20 December 2006; received after revision 6 February 2007; accepted 15 March 2007  相似文献   

19.
The plasma membrane of epithelial cells and hepatocytes is divided into two separate membrane compartments, the apical and the basolateral domain. This polarity is maintained by intracellular machinery that directs newly synthesized material into the correct target membrane. Apical protein sorting and trafficking require specific signals and different intracellular routes to the cell surface. Some of them depend on the integrity of sphingolipid/cholesterol-enriched membrane microdomains named ‘lipid rafts’, others use separate transport platforms. Certain characteristics of the heterogeneous population of apical sorting signals are described in this review and cellular factors associated with sorting and transport mechanisms are discussed. Received 5 May 2006; received after revision 12 June 2006; accepted 11 July 2006  相似文献   

20.
Lipid transfer in plants   总被引:12,自引:0,他引:12  
Summary Plant cells contain cytosolic proteins, called lipid transfer proteins (LTP), which are able to facilitate in vitro intermembrane transfer of phospholipids. Proteins of this kind from three plants, purified to homogeneity, have several properties in common: molecular mass around 9 kDa, high isoelectric point, lack of specificity for phospholipids, and binding ability for fatty acids. The comparison of their amino acid sequences revealed striking homologies and conserved domains which are probably involved in their function as LTPs. These proteins could play a major role in membrane biogenesis by conveying phospholipids from their site of biosynthesis to membranes unable to form these lipids. Immunochemical methods were used to establish an in vivo correlation between membrane biogenesis and the level of LTP or the amount of LTP synthesized in vitro from mRNAs. The recent isolation of a full-length cDNA allows novel approaches to studying the participation of LTPs in the biogenesis of plant cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号