首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axoplasmic transport of muscarinic receptors   总被引:5,自引:0,他引:5  
P Laduron 《Nature》1980,286(5770):287-288
The reality of axoplasmic transport is widely accepted; various neutrotransmitters, enzymes, labelled proteins and peptides are known to move rapidly along the axons of different nerve fibres. In the terminals of sympathetic nerves, noradrenaline release is controlled by various regulatory mechanisms which imply the occurrence of presynaptic receptors. In this regard, there is considerable indirect physiological evidence for the existence of muscarinic cholinergic receptors in the sympathetic nerve endings; the stimulation by acetylcholine of such presynaptic receptors elicits an inhibitory effect on noradrenaline release. We not provide direct biochemical evidence for the occurrence in dog splenic nerve of muscarinic receptors which seem to move along the axon as suggested by their rapid accumulation on either side of a ligature.  相似文献   

2.
Jasmin L  Rabkin SD  Granato A  Boudah A  Ohara PT 《Nature》2003,424(6946):316-320
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.  相似文献   

3.
Mechanism for chronic pain generation   总被引:4,自引:0,他引:4  
Neuropathic pain and the other abnormalities of sensation induced by axon injury or by peripheral nerve inflammation should result from functional compensations of the injured neurons during their regeneration. Ectopic distribution of proteins related to Na+, K+ and Ca2+ channels as well as of receptors on both membranes of injured axon and its cell body becomes a main pacemaker from which spontaneous ectopic afferent of primary sensatory neurons and crosstalk between neurons occur. Abnormal ectopic afferent activities lead to disorders of the sensation, such as hyperalgesia, allodynia, spontaneous pain and paraesthesia. Administration of some ion channel agents and/or α2-adrenergic blockers has shown efficiency in preventing neuropathic pain development and in relieving neuropathic pain.  相似文献   

4.
Pain after nerve damage is an expression of pathological operation of the nervous system, one hallmark of which is tactile allodynia-pain hypersensitivity evoked by innocuous stimuli. Effective therapy for this pain is lacking, and the underlying mechanisms are poorly understood. Here we report that pharmacological blockade of spinal P2X4 receptors (P2X4Rs), a subtype of ionotropic ATP receptor, reversed tactile allodynia caused by peripheral nerve injury without affecting acute pain behaviours in naive animals. After nerve injury, P2X4R expression increased strikingly in the ipsilateral spinal cord, and P2X4Rs were induced in hyperactive microglia but not in neurons or astrocytes. Intraspinal administration of P2X4R antisense oligodeoxynucleotide decreased the induction of P2X4Rs and suppressed tactile allodynia after nerve injury. Conversely, intraspinal administration of microglia in which P2X4Rs had been induced and stimulated, produced tactile allodynia in naive rats. Taken together, our results demonstrate that activation of P2X4Rs in hyperactive microglia is necessary for tactile allodynia after nerve injury and is sufficient to produce tactile allodynia in normal animals. Thus, blocking P2X4Rs in microglia might be a new therapeutic strategy for pain induced by nerve injury.  相似文献   

5.
Peripheral nerve injury triggers central sprouting of myelinated afferents.   总被引:43,自引:0,他引:43  
C J Woolf  P Shortland  R E Coggeshall 《Nature》1992,355(6355):75-78
The central terminals of primary afferent neurons are topographically highly ordered in the spinal cord. Peripheral receptor sensitivity is reflected by dorsal horn laminar location: low-threshold mechanoreceptors terminate in laminae III and IV (refs 2, 3) and high-threshold nociceptors in laminae I, II and V (refs 4,5). Unmyelinated C fibres, most of which are nociceptors, terminate predominantly in lamina II (refs 5, 7). There is therefore an anatomical framework for the transfer of specific inputs to localized subsets of dorsal horn neurons. This specificity must contribute to the relationship between a low-intensity stimulus and an innocuous sensation and a noxious stimulus and pain. We now show that after peripheral nerve injury the central terminals of axotomized myelinated afferents, including the large A beta fibres, sprout into lamina II. This structural reorganization in the adult central nervous system may contribute to the development of the pain mediated by A-fibres that can follow nerve lesions in humans.  相似文献   

6.
Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-gamma to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.  相似文献   

7.
Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia   总被引:83,自引:0,他引:83  
The vanilloid receptor-1 (VR1) is a ligand-gated, non-selective cation channel expressed predominantly by sensory neurons. VR1 responds to noxious stimuli including capsaicin, the pungent component of chilli peppers, heat and extracellular acidification, and it is able to integrate simultaneous exposure to these stimuli. These findings and research linking capsaicin with nociceptive behaviours (that is, responses to painful stimuli in animals have led to VR1 being considered as important for pain sensation. Here we have disrupted the mouse VR1 gene using standard gene targeting techniques. Small diameter dorsal root ganglion neurons isolated from VR1-null mice lacked many of the capsaicin-, acid- and heat-gated responses that have been previously well characterized in small diameter dorsal root ganglion neurons from various species. Furthermore, although the VR1-null mice appeared normal in a wide range of behavioural tests, including responses to acute noxious thermal stimuli, their ability to develop carrageenan-induced thermal hyperalgesia was completely absent. We conclude that VR1 is required for inflammatory sensitization to noxious thermal stimuli but also that alternative mechanisms are sufficient for normal sensation of noxious heat.  相似文献   

8.
Spontaneous and evoked activity of fetal primary afferents in vivo   总被引:2,自引:0,他引:2  
M Fitzgerald 《Nature》1987,326(6113):603-605
The first movements of the fetus are apparently random and spontaneous. Their onset coincides with the growth of dorsal root afferents into the spinal cord and it is possible that they are not simply a result of spontaneous motoneuron activity but are reflex responses to sensory stimulation. It is not clear what stimuli could normally evoke such reflexes because nothing is known of the properties of primary afferent neurons in the fetus. I have investigated this by making recordings from single dorsal root ganglion cells in fetal rats in vivo. The afferents have small, defined receptive fields and respond to mechanical stimulation of skin or muscle at intensities that might occur in utero. Many of them are also chemosensitive. Unlike postnatal afferents they display background activity which peaks at the same age as fetal movements. Repeated stimulation causes long-lasting increases of both background and evoked activity. Such sensory input is likely to have a considerable influence on fetal movements and on the development of spinal cord connections.  相似文献   

9.
Molecular mechanisms of nociception   总被引:71,自引:0,他引:71  
Julius D  Basbaum AI 《Nature》2001,413(6852):203-210
The sensation of pain alerts us to real or impending injury and triggers appropriate protective responses. Unfortunately, pain often outlives its usefulness as a warning system and instead becomes chronic and debilitating. This transition to a chronic phase involves changes within the spinal cord and brain, but there is also remarkable modulation where pain messages are initiated - at the level of the primary sensory neuron. Efforts to determine how these neurons detect pain-producing stimuli of a thermal, mechanical or chemical nature have revealed new signalling mechanisms and brought us closer to understanding the molecular events that facilitate transitions from acute to persistent pain.  相似文献   

10.
J E Silva  P R Larsen 《Nature》1983,305(5936):712-713
There are several mechanisms by which homeothermic animals increase heat production, including shivering, sympathetic nervous system activation and stimulation of thyroid hormone secretion. Studies in rats have shown that increased sympathetic activity causes increased heat production in brown adipose tissue (BAT) after cold exposure or food ingestion. Acute cold exposure also increases circulating thyroid hormones which in turn stimulate cellular metabolism through induction of various enzymes. Most metabolic effects of thyroxine (T4) are thought to be due to the triiodothyronine (T3) which is produced from T4 by a process of 5' monodeiodination. There are two enzymes responsible for this reaction: type I, or propylthiouracil (PTU)-sensitive iodothyronine deiodinase (5'D-I), which is reduced in hypothyroidism, stimulated in hyperthyroidism and probably provides most of the circulating T3 in the adult rat. Type II 5'-deiodinase (5'D-II) is characteristic of brain and pituitary, is increased by thyroidectomy, is not inhibited by PTU and provides 50-80% of the intracellular T3 in these two tissues. Recently, 5'D-II activity was identified in interscapular BAT. As the sympathetic nervous system influences the metabolic activation of BAT, we have studied the effects of noradrenaline and acute cold exposure on BAT 5'D-II. We report here that both noradrenaline and cold exposure increase BAT 5'D-II through alpha 1-adrenergic receptors, whereas depletion of catecholamines with alpha-methyl-p-tyrosine (MPT) prevents the effect of cold but not that of noradrenaline. These results suggest that the sympathetic nervous system may increase T3 production in rats by stimulating BAT 5'D-II. By increasing metabolic rate, this rise in T3 would enhance the thermogenic response to sympathetic stimulation.  相似文献   

11.
Recent studies suggest that thermogenesis in brown adipose tissue has an important role in the regulation of energy balance. Thermogenesis is effected by noradrenaline released from sympathetic nerve endings; the noradrenaline stimulates beta-adrenoceptors, causing lipolysis, and the released fatty acids then promote the uncoupling of oxidative phosphorylation from electron transport. It has been widely accepted that mammalian beta-adrenoceptors exist as two subtypes, beta 1 and beta 2, and rat brown adipocyte beta-adrenoceptors have been classed as beta 1 or as a mixed beta 1/beta 2 population. The beta 1 subtype predominates in atria, whereas the beta 2 subtype predominates in trachea. However, we have now found a novel group of beta-adrenoceptor agonists that selectively stimulate lipolysis in brown adipocytes. In contrast, isoprenaline, fenoterol and salbutamol are less potent as stimulants of lipolysis than as stimulants of atrial rate or tracheal relaxation. Therefore, beta-adrenoceptors in rat brown adipocytes are of neither the beta 1 nor beta 2 subtypes. Compounds that selectively stimulate brown adipocyte beta-adrenoceptors should have potential as thermogenic anti-obesity agents and this has been demonstrated with BRL 26830A , BRL 33725A and BRL 35135A .  相似文献   

12.
Evidence for a central component of post-injury pain hypersensitivity   总被引:50,自引:0,他引:50  
C J Woolf 《Nature》1983,306(5944):686-688
Noxious skin stimuli which are sufficiently intense to produce tissue injury, characteristically generate prolonged post-stimulus sensory disturbances that include continuing pain, an increased sensitivity to noxious stimuli and pain following innocuous stimuli. This could result from either a reduction in the thresholds of skin nociceptors (sensitization) or an increase in the excitability of the central nervous system so that normal inputs now evoke exaggerated responses. Because sensitization of peripheral receptors occurs following injury, a peripheral mechanism is widely held to be responsible for post-injury hypersensitivity. To investigate this I have now developed an animal model where changes occur in the threshold and responsiveness of the flexor reflex following peripheral injury that are analogous to the sensory changes found in man. Electrophysiological analysis of the injury-induced increase in excitability of the flexion reflex shows that it in part arises from changes in the activity of the spinal cord. The long-term consequences of noxious stimuli result, therefore, from central as well as from peripheral changes.  相似文献   

13.
Coull JA  Beggs S  Boudreau D  Boivin D  Tsuda M  Inoue K  Gravel C  Salter MW  De Koninck Y 《Nature》2005,438(7070):1017-1021
Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (E(anion)) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (gamma-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in E(anion). Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the E(anion) shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and E(anion). Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia-neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.  相似文献   

14.
J A Brock  T C Cunnane 《Nature》1987,326(6113):605-607
At the skeletal neuromuscular junction, electrophysiological methods have provided much useful information about the mechanisms involved in the release of transmitter. At the autonomic neuroeffector junction it has not been possible to carry out similar studies. Here we report a method of extracellular recording which allows simultaneous measurement of both the nerve action potential and transmitter release from postganglionic sympathetic nerve terminals. We have confirmed that release is intermittent, but the importance of this new approach is that the relationship between the nerve terminal action potential and transmitter release can be studied unambiguously for the first time. Thus we are able to show unequivocally that intermittence is caused by a low probability of release in the invaded varicosity and not by failure of the action potential to invade the varicosity.  相似文献   

15.
ATP activates damage-sensing neurons (nociceptors) and can evoke a sensation of pain. The ATP receptor P2X3 is selectively expressed by nociceptors and is one of seven ATP-gated, cation-selective ion channels. Here we demonstrate that ablation of the P2X3 gene results in the loss of rapidly desensitizing ATP-gated cation currents in dorsal root ganglion neurons, and that the responses of nodose ganglion neurons to ATP show altered kinetics and pharmacology resulting from the loss of expression of P2X(2/3) heteromultimers. Null mutants have normal sensorimotor function. Behavioural responses to noxious mechanical and thermal stimuli are also normal, although formalin-induced pain behaviour is reduced. In contrast, deletion of the P2X3 receptor causes enhanced thermal hyperalgesia in chronic inflammation. Notably, although dorsal-horn neuronal responses to mechanical and noxious heat application are normal, P2X3-null mice are unable to code the intensity of non-noxious 'warming' stimuli.  相似文献   

16.
S Konishi  A Tsunoo  M Otsuka 《Nature》1979,282(5738):515-516
Recent biochemical and immunohistochemical studies have shown that the opioid peptides, enkephalins, occur in nerve terminals and cell bodies in mammalian sympathetic ganglia1-3. Opiates and enkephalins are thought to inhibit synaptic transmission in the peripheral nervous tissues as well as in the central nervous system4-12. The mechanisms of the opiate actions, however, are not entirely clear; both pre- and postsynaptic sites of action have been proposed7-9,11,12. As acetylcholine is known to be the major neurotransmitter in the autonomic ganglia and as the mechanism of synaptic transmission is well clarified13, analysis of the peptide action could be more easily but equally usefully carried out in the peripheral synapses than in central synapses. We now report that enkephalins presynaptically inhibit cholinergic transmission in sympathetic ganglia.  相似文献   

17.
Hein L  Altman JD  Kobilka BK 《Nature》1999,402(6758):181-184
The sympathetic nervous system regulates cardiovascular function by activating adrenergic receptors in the heart, blood vessels and kidney. Alpha2-adrenergic receptors are known to have a critical role in regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons in the central nervous system; however, the individual roles of the three highly homologous alpha2-adrenergic-receptor subtypes (alpha2A, alpha2B, alpha2C) in this process are not known. We have now studied neurotransmitter release in mice in which the genes encoding the three alpha2-adrenergic-receptor subtypes were disrupted. Here we show that both the alpha2A- and alpha2C-subtypes are required for normal presynaptic control of transmitter release from sympathetic nerves in the heart and from central noradrenergic neurons. Alpha2A-adrenergic receptors inhibit transmitter release at high stimulation frequencies, whereas the alpha2C-subtype modulates neurotransmission at lower levels of nerve activity. Both low- and high-frequency regulation seem to be physiologically important, as mice lacking both alpha2A- and alpha2C-receptor subtypes have elevated plasma noradrenaline concentrations and develop cardiac hypertrophy with decreased left ventricular contractility by four months of age.  相似文献   

18.
Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors.  相似文献   

19.
R Raisman  M Briley  S Z Langer 《Nature》1979,281(5727):148-150
The discovery of high-affinity binding sites for psychoactive drugs such as benzodiazepines, opiates and neuroleptics has opened up new approaches to the study of these drugs and their mechanisms of action. Although most tricyclic antidepressants inhibit neuronal uptake of noradrenaline and serotonin, their mechanism of action remains unclear. Changes in the sensitivity of the beta-receptor after chronic tricyclic antidepressant treatment suggest that they modulate noradrenergic neurotransmission. Tricyclic antidepressants also act directly on cholinergic, histaminergic, alpha-adrenergic and serotonergic receptors. It is not clear, however, which, if any, of these effects are related to the primary antidepressant effect or whether they are simply responsible for some of the side effects. We have thus investigated the possibility that specific binding sites for tricyclic antidepressants exist in the central nervous system. So far, binding studies using 3H-labelled tricyclic antidepressant drugs have only detected binding to histaminergic H2 and cholinergic muscarinic receptors and low-affinity binding. We demonstrate here a population of specific high-affinity binding sites for 3H-imipramine on brain membranes which may be responsible for the antidepressant effects of these drugs.  相似文献   

20.
Touch and mechanical pain are first detected at our largest sensory surface, the skin. The cell bodies of sensory neurons that detect such stimuli are located in the dorsal root ganglia, and subtypes of these neurons are specialized to detect specific modalities of mechanical stimuli. Molecules have been identified that are necessary for mechanosensation in invertebrates but so far not in mammals. In Caenorhabditis elegans, mec-2 is one of several genes identified in a screen for touch insensitivity and encodes an integral membrane protein with a stomatin homology domain. Here we show that about 35% of skin mechanoreceptors do not respond to mechanical stimuli in mice with a mutation in stomatin-like protein 3 (SLP3, also called Stoml3), a mammalian mec-2 homologue that is expressed in sensory neurons. In addition, mechanosensitive ion channels found in many sensory neurons do not function without SLP3. Tactile-driven behaviours are also impaired in SLP3 mutant mice, including touch-evoked pain caused by neuropathic injury. SLP3 is therefore indispensable for the function of a subset of cutaneous mechanoreceptors, and our data support the idea that this protein is an essential subunit of a mammalian mechanotransducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号