首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
把羧化的碳纳米管与水热法合成的V2O5纳米线混合超声处理后,直接真空抽滤得到无粘结剂V2O5纳米线/CNT纸.对加入不同含量的碳纳米管的样品,综合考虑比容量和循环性能,其中m(V2O5)∶m(CNT)=1∶1样品的电化学性能最好.当电流密度为30 mA·g-1时,首次放电比容量能达到290.6 mAh·g-1,接近于V2O5的理论比容量,10次循环以后为265.4mAh·g-1,容量保持率为91.32%.当电流密度为600 mA·g-1,首次放电比容量71.2 mAh·g-1,第10次循环为62.5 mA·g-1,容量保持率可达87.8%.  相似文献   

2.
采用共沉淀-微波法,利用自制加料装置合成了橄榄石型LiFePO4/C. 利用SEM、交流阻抗及恒流充放电技术对样品进行形貌表征和电化学性能测试. 结果表明微波8min样品具有均匀结构和较好电化学性能;0.2 C充放电表明,首次放电比容量157.81 mAh/g,53周循环后仍为156.15 mAh/g,材料具有良好的循环性能;1C充放电时,第一次放电容量为136.30 mAh/g,经20周循环后容量没有明显衰减,材料的倍率性能较佳.  相似文献   

3.
采用低热固相反应法制备锂离子电池层状正极材料LiNi1/3Co1/3Mn1/3O2,考察制坯、回火温度和回火时间对合成产物电化学性能的影响。用X射线衍射分析(XRD)和电化学性能测试,对LiNi1/3Co1/3Mn1/3O2进行分析。结果表明:预烧后需要制坯,最佳回火温度为600℃,最佳回火时间为2 h;最佳工艺条件下制备的样品首次放电比容量为150.3 mAh.g-1,30次循环后仍大于130 mAh.g-1。  相似文献   

4.
研究了一种新型锂电池正极材料邻氨基二苄基二硫化物(OABD)及其聚合物(POABD)的电化学性能.该材料在低倍率(0.1C)下,单体OABD的首次放电比容量达到96 mAh·g-1;聚合物POABD的首次放电比容量达到290 mAh·g-1,在2.0 V处有明显的放电平台,循环6次后容量保持在100 mAh·g-1,材料聚合后电池性能改善明显.  相似文献   

5.
以兰炭为原料,KOH为活化剂,利用微波辐射对兰炭进行脱氢、炭化、活化制备活性炭材料.采用X射线衍射(XRD)、傅里叶红外光谱(FTIR),透射电子显微镜(TEM)等手段对材料的结构和形貌进行表征.通过恒流充放电、循环伏安(CV)对材料的电化学性能进行测试.结果表明:兰炭基活性炭用于锂离子电池负极材料具有优异的循环稳定性和良好的库伦效率.材料在充放电电流密度为200mA·g-1时,首次放电比容量达1 850mAh·g-1,循环60周后容量仍然保持在713.8mAh·g-1.  相似文献   

6.
作者研究了热处理温度对活性炭支撑的SiOx复合材料电化学性能的影响.分别利用X射线衍射(XRD)、扫描电镜(SEM)、傅立叶变换红外光谱(FT-IR)和元素分析技术对制备的复合材料进行了表征.实验结果表明:热处理温度升高SiOx晶型变好,碳含量降低;热处理温度为900℃时,复合材料表现出最好的电化学性能.首次放电比容量为1 228 mAh·g-1,库伦效率为54%.经过200次循环后,放电比容量为388 mAh·g-1.  相似文献   

7.
以葡萄糖为氧化石墨烯(GO)的还原剂和碳源,采用溶剂热法制备得到了Sb4O5Cl2/RGO/C复合材料,并首次将其用于锂离子电池负极材料进行充放电性能测试.结果表明,Sb4O5Cl2/RGO/C复合材料具有较高的可逆比容量和良好的循环性能,首次可逆比容量达636mAh·g-1,60次循环之后可逆容量仍保持在334mAh·g-1.同时,分别在100,200,500和1 000mA·g-1电流密度下进行充放电性能测试,可逆比容量分别为349,282,232和180mAh·g-1,呈现出较好的倍率性能.  相似文献   

8.
对在400℃至600℃固相合成的掺氟Li1 xV3O8进行微波后处理,用合成的材料组装成纽扣电池.通过充放电循环实验、XRD、IR和SEM研究了微波如何改善样品的电化学性能.结果发现,微波后处理可以改善材料的结晶度,提高材料的比容量和循环性能.经过微波处理的500℃烧结的掺氟Li1 xV3O8样品的第一循环的放电容量为238mAh/g,第40次循环的放电容量为142mAh/g.均比未经过微波处理的样品的容量提高了12%.微波处理延长了2.8V区的放电平台.  相似文献   

9.
以葡萄糖为碳源,硫代硫酸钠为硫源,一锅法原位复合制备S/C复合材料前驱体,然后在充放电循环过程中原位电化学法制备得到了Cu2S/C复合材料,并对其作为锂离子电池正极材料的电化学储锂性能进行了研究.充放电测试结果表明,Cu2S/C复合材料具有良好的循环性能,首次可逆容量为255.4mAh·g-1,100次循环后容量仍保持在252.3mAh·g-1,容量衰减很少.同时,分别在0.2,0.5和1C(1C=337mA·g-1)电流密度下进行充放电性能测试,容量分别为232.8,207.6,183.8mAh·g-1,呈现出较好的倍率性能.  相似文献   

10.
采用液相共沉淀法与高温固相法合成了La2O3包覆Li(Ni1/3 Co1/3 Mn1/3 )O2的锂离子电池正极材料,采用XRD和电化学方法表征了材料的结构与电化学性能.结果表明,在1 000 ℃焙烧10 h制备的Li(Ni1/3 Co1/3 Mn1/3 )O2材料经包覆2%的La2O3后,具有较佳的电化学性能.其0.1 C倍率首次放电容量和首次充放电效率分别为151.2 mAh·g-1 和83 8%,首次循环后的交流阻抗为162.2 Ω,以0.2 C倍率循环20次后的放电容量为140.7 mAh·g-1 .  相似文献   

11.
微波合成锂离子电池正极复合材料LiFePO4/C电化学性能   总被引:7,自引:0,他引:7  
采用微波合成技术合成锂离子电池正极材料LiFePO4,并进行碳掺杂,合成出复合材料LiFePO4/C.通过XRD,SEM和恒电流充放电实验,研究了材料结构形貌和电化学性能.结果表明,掺碳量4%时,采用40mA/g进行充放电,材料比容量可以达到109mAh/g,高倍率性能也有一定程度的提高.  相似文献   

12.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

13.
采用碳热还原法合成橄榄石型LiFePO4正极材料,并用溶胶-凝胶法在其表面修饰La2O3颗粒。通过X射线衍射(XRD)、场发射扫描电镜(FE-SEM)等方法对表面修饰前后的LiFePO4进行表征,分析了表面修饰前后LiFePO4物理性质的变化,并进行了恒流充放电测试和循环伏安测试,研究了表面修饰对LiFePO4电化学性能的影响。结果表明,La2O3表面修饰没有改变LiFePO4材料的晶体结构,LiFePO4材料经La2O3修饰后,其电化学性能显著改善。  相似文献   

14.
目的研究LiFePO4在不同锂盐电解液体系中的电化学性能。方法采用恒电流充电、放电和循环伏安方法来进行相关研究。结果在不同锂盐(LiClO4、LiBF4以及LiPF6)和不同碳酸酯混合溶剂(EC-DEC、EC-DMC或者PC-DMC)所组成的电解液中,电极材料在1 M LiClO4/EC-DMC和1 M LiPF6/EC-DMC电解液中的电化学性能较好。其中在1 M LiClO4/EC-DMC电解液中充放电容量最高,而在1 M LiBF4/EC-DMC电解液中的充电、放电容量最低。结论锂盐本身及电解液的电导率对磷酸亚铁锂电化学性能有较大的影响。  相似文献   

15.
以自制的磷酸铁作为铁源和磷源,用高温自生压力法(即RAPET法)合成了LiFe-PO4/C复合材料,分别比较了以葡萄糖、蔗糖或柠檬酸为碳源和以碳酸锂或氢氧化锂为锂源所得LiFePO4/C复合材料电化学性能的影响。利用X射线衍射(XRD)、循环伏安(CV)、交流阻抗(EIS)和充放电测试等方法,分别对样品的晶型和电化学性能等进行了表征和分析。结果表明:以柠檬酸为碳源、碳酸锂为锂源制备的LiFePO4/C复合材料电化学性能更优异,首次放电比容量达到166.1mAh/g。  相似文献   

16.
采用固相合成法制备了碳掺杂的LiFePO4复合正极材料,用XRD、SEM、激光粒度分布仪等对其进行了表征,并将其组装成实验电池利用电化学工作站及充放电测试等对样品的电化学性能进行了研究分析.结果表明,LiFePO4/C具有单一的橄榄石晶体结构,少量的碳掺杂能显著改善其电化学性能,LiFePO4/C样品的粒度较小且分布均匀,0.1 C首次放电比容量为141.8 mAh/g,循环50次后容量衰减了7.69%.图6,参8.  相似文献   

17.
通过水热法合成了纯度较高、结晶良好且粒径均匀细小的LiFePO4粉体.采用XRD,SEM对材料的结构和形貌进行分析,并研究了水热合成温度和反应时间对材料电化学性能的影响.结果表明,提高反应温度和延长合成时间有利于提高材料的结晶度,但会增大材料粒径.200℃水热合成5 h样品电化学性能最佳,0.1C倍率首次放电比容量138.0 mAh.g-1,具备工业化实用性.在水热合成中加入抗坏血酸和葡萄糖可有效避免Fe2+的氧化并增强材料的导电性.  相似文献   

18.
以不同平均分子量的聚乙二醇(PEG)组合体系为纳米结构控制剂和碳源,采用旋转蒸干法制备了LiFePO4/C复合材料。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电测试等手段对其晶体结构、形貌与电化学性能进行了表征。结果表明:不同的PEG组合体系对LiFePO4的晶体尺寸和颗粒形貌具有调控...  相似文献   

19.
以表面活性剂为模板通过自组主装的方式合成了介孔的锂离子电池正极材料LiFePO4.采用XRD、SEM、BET和电化学测试对材料的结构、形貌、比表面积和电化学性能进行表征.介孔LiFePO4的平均粒度在200~300 nm,首次放电比容量可达133.2 mAh/g.介孔LiFePO4的电化学性能与非孔结构的LiFePO4相比有很大提高.  相似文献   

20.
使用廉价的三价铁Fe2O3为铁源,以蔗糖为还原剂和导电剂,通过热还原法制备了LiFePO4/C复合材料。运用TGA-DAT曲线对反应机制进行了分析,利用X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电和循环伏安测试等测试手段对不同覆碳量合成材料进行了表征和电化学性能检测。结果表明:所合成的LiFePO4均为纯相,其中含碳1.07%的样品0.2C倍率下的放电比容量为143.32 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号