首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Dobson DP  Brodholt JP 《Nature》2005,434(7031):371-374
Ultralow-velocity zones (ULVZs) are regions of the Earth's core-mantle boundary about 1-10 kilometres thick exhibiting seismic velocities that are lower than radial-Earth reference models by about 10-20 per cent for compressional waves and 10-30 per cent for shear waves. It is also thought that such regions have an increased density of about 0-20 per cent (ref. 1). A number of origins for ULVZs have been proposed, such as ponding of dense silicate melt, core-mantle reaction zones or underside sedimentation from the core. Here we suggest that ULVZs might instead be relics of banded iron formations subducted to the core-mantle boundary between 2.8 and 1.8 billion years ago. Consisting mainly of interbedded iron oxides and silica, such banded iron formations were deposited in the world's oceans during the late Archaean and early Proterozoic eras. We argue that these layers, as part of the ocean floor, would be recycled into the Earth's interior by subduction, sink to the bottom of the mantle and may explain all of the observed features of ULVZs.  相似文献   

2.
Poulton SW  Fralick PW  Canfield DE 《Nature》2004,431(7005):173-177
The Proterozoic aeon (2.5 to 0.54 billion years (Gyr) ago) marks the time between the largely anoxic world of the Archean (> 2.5 Gyr ago) and the dominantly oxic world of the Phanerozoic (< 0.54 Gyr ago). The course of ocean chemistry through the Proterozoic has traditionally been explained by progressive oxygenation of the deep ocean in response to an increase in atmospheric oxygen around 2.3 Gyr ago. This postulated rise in the oxygen content of the ocean is in turn thought to have led to the oxidation of dissolved iron, Fe(II), thus ending the deposition of banded iron formations (BIF) around 1.8 Gyr ago. An alternative interpretation suggests that the increasing atmospheric oxygen levels enhanced sulphide weathering on land and the flux of sulphate to the oceans. This increased rates of sulphate reduction, resulting in Fe(II) removal in the form of pyrite as the oceans became sulphidic. Here we investigate sediments from the approximately 1.8-Gyr-old Animikie group, Canada, which were deposited during the final stages of the main global period of BIF deposition. This allows us to evaluate the two competing hypotheses for the termination of BIF deposition. We use iron-sulphur-carbon (Fe-S-C) systematics to demonstrate continued ocean anoxia after the final global deposition of BIF and show that a transition to sulphidic bottom waters was ultimately responsible for the termination of BIF deposition. Sulphidic conditions may have persisted until a second major rise in oxygen between 0.8 to 0.58 Gyr ago, possibly reducing global rates of primary production and arresting the pace of algal evolution.  相似文献   

3.
Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin   总被引:6,自引:0,他引:6  
Shen Y  Knoll AH  Walter MR 《Nature》2003,423(6940):632-635
Many independent lines of evidence document a large increase in the Earth's surface oxidation state 2,400 to 2,200 million years ago, and a second biospheric oxygenation 800 to 580 million years ago, just before large animals appear in the fossil record. Such a two-staged oxidation implies a unique ocean chemistry for much of the Proterozoic eon, which would have been neither completely anoxic and iron-rich as hypothesized for Archaean seas, nor fully oxic as supposed for most of the Phanerozoic eon. The redox chemistry of Proterozoic oceans has important implications for evolution, but empirical constraints on competing environmental models are scarce. Here we present an analysis of the iron chemistry of shales deposited in the marine Roper Basin, Australia, between about 1,500 and 1,400 million years ago, which record deep-water anoxia beneath oxidized surface water. The sulphur isotopic compositions of pyrites in the shales show strong variations along a palaeodepth gradient, indicating low sulphate concentrations in mid-Proterozoic oceans. Our data help to integrate a growing body of evidence favouring a long-lived intermediate state of the oceans, generated by the early Proterozoic oxygen revolution and terminated by the environmental transformation late in the Proterozoic eon.  相似文献   

4.
Towe KM 《Nature》1990,348(6296):54-56
The Earth's atmosphere during the Archaean era (3,800-2,500 Myr ago) is generally thought to have been anoxic, with the partial pressure of atmospheric oxygen about 10(-12) times the present value. In the absence of aerobic consumption of oxygen produced by photosynthesis in the ocean, the major sink for this oxygen would have been oxidation of dissolved Fe(II). Atmospheric oxygen would also be removed by the oxidation of biogenic methane. But even very low estimates of global primary productivity, obtained from the amounts of organic carbon preserved in Archaean rocks, seem to require the sedimentation of an unrealistically large amount of iron and the oxidation of too much methane if global anoxia was to be maintained. I therefore suggest that aerobic respiration must have developed early in the Archaean to prevent a build-up of atmospheric oxygen before the Proterozoic. An atmosphere that contained a low (0.2-0.4%) but stable proportion of oxygen is required.  相似文献   

5.
Brocks JJ  Love GD  Summons RE  Knoll AH  Logan GA  Bowden SA 《Nature》2005,437(7060):866-870
The disappearance of iron formations from the geological record approximately 1.8 billion years (Gyr) ago was the consequence of rising oxygen levels in the atmosphere starting 2.45-2.32 Gyr ago. It marks the end of a 2.5-Gyr period dominated by anoxic and iron-rich deep oceans. However, despite rising oxygen levels and a concomitant increase in marine sulphate concentration, related to enhanced sulphide oxidation during continental weathering, the chemistry of the oceans in the following mid-Proterozoic interval (approximately 1.8-0.8 Gyr ago) probably did not yet resemble our oxygen-rich modern oceans. Recent data indicate that marine oxygen and sulphate concentrations may have remained well below current levels during this period, with one model indicating that anoxic and sulphidic marine basins were widespread, and perhaps even globally distributed. Here we present hydrocarbon biomarkers (molecular fossils) from a 1.64-Gyr-old basin in northern Australia, revealing the ecological structure of mid-Proterozoic marine communities. The biomarkers signify a marine basin with anoxic, sulphidic, sulphate-poor and permanently stratified deep waters, hostile to eukaryotic algae. Phototrophic purple sulphur bacteria (Chromatiaceae) were detected in the geological record based on the new carotenoid biomarker okenane, and they seem to have co-existed with communities of green sulphur bacteria (Chlorobiaceae). Collectively, the biomarkers support mounting evidence for a long-lasting Proterozoic world in which oxygen levels remained well below modern levels.  相似文献   

6.
Key steps in atmospheric evolution occurred in the Archaean. The Hadean atmosphere was created by the inorganic processes of volatile accretion from space and degassing from the interior, and then modified by chemical and photochemical processes. The air was probably initially anoxic, though there may have been a supply of oxidation power as a consequence of hydrodynamic escape to space of hydrogen from water. Early subduction may have removed CO2 and the Hadean planet may have been icy. In the Archaean, as anoxygenic and then oxygenic photosynthesis evolved, biological activity remade the atmosphere. Sedimentological evidence implies there were liquid oceans despite the faint young Sun. These oceans may have been sustained by the greenhouse warming effect of biologically-made methane. Oxygenesis in the late Archaean would have released free O2 into the water. This would have created oxic surface waters, challenging the methane greenhouse. After the Great Oxidation Event around 2.3 to 2.4 billion years ago, the atmosphere itself became oxic, perhaps triggering a glacial crisis by cutting methane-caused greenhouse warming. By the early Proterozoic, all the key biochemical processes that maintain the modern atmosphere were probably present in the microbial community.  相似文献   

7.
Atmospheric carbon dioxide concentrations before 2.2 billion years ago   总被引:5,自引:0,他引:5  
Rye R  Kuo PH  Holland HD 《Nature》1995,378(6557):603-605
The composition of the Earth's early atmosphere is a subject of continuing debate. In particular, it has been suggested that elevated concentrations of atmospheric carbon dioxide would have been necessary to maintain normal surface temperatures in the face of lower solar luminosity in early Earth history. Fossil weathering profiles, known as palaeosols, have provided semi-quantitative constraints on atmospheric oxygen partial pressure (pO2) before 2.2 Gyr ago. Here we use the same well studied palaeosols to constrain atmospheric pCO2 between 2.75 and 2.2 Gyr ago. The observation that iron lost from the tops of these profiles was reprecipitated lower down as iron silicate minerals, rather than as iron carbonate, indicates that atmospheric pCO2 must have been less than 10(-1.4) atm--about 100 times today's level of 360 p.p.m., and at least five times lower than that required in one-dimensional climate models to compensate for lower solar luminosity at 2.75 Gyr. Our results suggest that either the Earth's early climate was much more sensitive to increases in pCO2 than has been thought, or that one or more greenhouse gases other than CO2 contributed significantly to the atmosphere's radiative balance during the late Archaean and early Proterozoic eons.  相似文献   

8.
Kump LR  Barley ME 《Nature》2007,448(7157):1033-1036
The hypothesis that the establishment of a permanently oxygenated atmosphere at the Archaean-Proterozoic transition (approximately 2.5 billion years ago) occurred when oxygen-producing cyanobacteria evolved is contradicted by biomarker evidence for their presence in rocks 200 million years older. To sustain vanishingly low oxygen levels despite near-modern rates of oxygen production from approximately 2.7-2.5 billion years ago thus requires that oxygen sinks must have been much larger than they are now. Here we propose that the rise of atmospheric oxygen occurred because the predominant sink for oxygen in the Archaean era-enhanced submarine volcanism-was abruptly and permanently diminished during the Archaean-Proterozoic transition. Observations are consistent with the corollary that subaerial volcanism only became widespread after a major tectonic episode of continental stabilization at the beginning of the Proterozoic. Submarine volcanoes are more reducing than subaerial volcanoes, so a shift from predominantly submarine to a mix of subaerial and submarine volcanism more similar to that observed today would have reduced the overall sink for oxygen and led to the rise of atmospheric oxygen.  相似文献   

9.
The evolution of the marine phosphate reservoir   总被引:3,自引:0,他引:3  
Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ~750 to ~635?Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.  相似文献   

10.
Kah LC  Lyons TW  Frank TD 《Nature》2004,431(7010):834-838
Progressive oxygenation of the Earth's early biosphere is thought to have resulted in increased sulphide oxidation during continental weathering, leading to a corresponding increase in marine sulphate concentration. Accurate reconstruction of marine sulphate reservoir size is therefore important for interpreting the oxygenation history of early Earth environments. Few data, however, specifically constrain how sulphate concentrations may have changed during the Proterozoic era (2.5-0.54 Gyr ago). Prior to 2.2 Gyr ago, when oxygen began to accumulate in the Earth's atmosphere, sulphate concentrations are inferred to have been <1 mM and possibly <200 microM, on the basis of limited isotopic variability preserved in sedimentary sulphides and experimental data showing suppressed isotopic fractionation at extremely low sulphate concentrations. By 0.8 Gyr ago, oxygen and thus sulphate levels may have risen significantly. Here we report large stratigraphic variations in the sulphur isotope composition of marine carbonate-associated sulphate, and use a rate-dependent model for sulphur isotope change that allows us to track changes in marine sulphate concentrations throughout the Proterozoic. Our calculations indicate sulphate levels between 1.5 and 4.5 mM, or 5-15 per cent of modern values, for more than 1 Gyr after initial oxygenation of the Earth's biosphere. Persistence of low oceanic sulphate demonstrates the protracted nature of Earth's oxygenation. It links biospheric evolution to temporal patterns in the depositional behaviour of marine iron- and sulphur-bearing minerals, biological cycling of redox-sensitive elements and availability of trace metals essential to eukaryotic development.  相似文献   

11.
Iron formations are chemical sedimentary rocks comprising layers of iron-rich and silica-rich minerals whose deposition requires anoxic and iron-rich (ferruginous) sea water. Their demise after the rise in atmospheric oxygen by 2.32?billion years (Gyr) ago has been attributed to the removal of dissolved iron through progressive oxidation or sulphidation of the deep ocean. Therefore, a sudden return of voluminous iron formations nearly 500?million years later poses an apparent conundrum. Most late Palaeoproterozoic iron formations are about 1.88?Gyr old and occur in the Superior region of North America. Major iron formations are also preserved in Australia, but these were apparently deposited after the transition to a sulphidic ocean at 1.84?Gyr ago that should have terminated iron formation deposition, implying that they reflect local marine conditions. Here we date zircons in tuff layers to show that iron formations in the Frere Formation of Western Australia are about 1.88?Gyr old, indicating that the deposition of iron formations from two disparate cratons was coeval and probably reflects global ocean chemistry. The sudden reappearance of major iron formations at 1.88?Gyr ago--contemporaneous with peaks in global mafic-ultramafic magmatism, juvenile continental and oceanic crust formation, mantle depletion and volcanogenic massive sulphide formation--suggests deposition of iron formations as a consequence of major mantle activity and rapid crustal growth. Our findings support the idea that enhanced submarine volcanism and hydrothermal activity linked to a peak in mantle melting released large volumes of ferrous iron and other reductants that overwhelmed the sulphate and oxygen reservoirs of the ocean, decoupling atmospheric and seawater redox states, and causing the return of widespread ferruginous conditions. Iron formations formed on clastic-starved coastal shelves where dissolved iron upwelled and mixed with oxygenated surface water. The disappearance of iron formations after this event may reflect waning mafic-ultramafic magmatism and a diminished flux of hydrothermal iron relative to seawater oxidants.  相似文献   

12.
Nitrogen is an essential element for life and is often the limiting nutrient for terrestrial ecosystems. As most nitrogen is locked in the kinetically stable form, N2, in the Earth's atmosphere, processes that can fix N2 into biologically available forms-such as nitrate and ammonia-control the supply of nitrogen for organisms. On the early Earth, nitrogen is thought to have been fixed abiotically, as nitric oxide formed during lightning discharge. The advent of biological nitrogen fixation suggests that at some point the demand for fixed nitrogen exceeded the supply from abiotic sources, but the timing and causes of the onset of biological nitrogen fixation remain unclear. Here we report an experimental simulation of nitrogen fixation by lightning over a range of Hadean (4.5-3.8 Gyr ago) and Archaean (3.8-2.5 Gyr ago) atmospheric compositions, from predominantly carbon dioxide to predominantly dinitrogen (but always without oxygen). We infer that, as atmospheric CO2 decreased over the Archaean period, the production of nitric oxide from lightning discharge decreased by two orders of magnitude until about 2.2 Gyr. After this time, the rise in oxygen (or methane) concentrations probably initiated other abiotic sources of nitrogen. Although the temporary reduction in nitric oxide production may have lasted for only 100 Myr or less, this was potentially long enough to cause an ecological crisis that triggered the development of biological nitrogen fixation.  相似文献   

13.
The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment (LHB). Many assume the LHB ended about 3.7 to 3.8 billion years (Gyr) ago with the formation of Orientale basin. Evidence for LHB-sized blasts on Earth, however, extend into the Archaean and early Proterozoic eons, in the form of impact spherule beds: globally distributed ejecta layers created by Chicxulub-sized or larger cratering events4. At least seven spherule beds have been found that formed between 3.23 and 3.47?Gyr ago, four between 2.49 and 2.63?Gyr ago, and one between 1.7 and 2.1?Gyr ago. Here we report that the LHB lasted much longer than previously thought, with most late impactors coming from the E belt, an extended and now largely extinct portion of the asteroid belt between 1.7 and 2.1 astronomical units from Earth. This region was destabilized by late giant planet migration. E-belt survivors now make up the high-inclination Hungaria asteroids. Scaling from the observed Hungaria asteroids, we find that E-belt projectiles made about ten lunar basins between 3.7 and 4.1?Gyr ago. They also produced about 15 terrestrial basins between 2.5 and 3.7?Gyr ago, as well as around 70 and four Chicxulub-sized or larger craters on the Earth and Moon, respectively, between 1.7 and 3.7?Gyr ago. These rates reproduce impact spherule bed and lunar crater constraints.  相似文献   

14.
Dating the rise of atmospheric oxygen   总被引:8,自引:0,他引:8  
Several lines of geological and geochemical evidence indicate that the level of atmospheric oxygen was extremely low before 2.45 billion years (Gyr) ago, and that it had reached considerable levels by 2.22 Gyr ago. Here we present evidence that the rise of atmospheric oxygen had occurred by 2.32 Gyr ago. We found that syngenetic pyrite is present in organic-rich shales of the 2.32-Gyr-old Rooihoogte and Timeball Hill formations, South Africa. The range of the isotopic composition of sulphur in this pyrite is large and shows no evidence of mass-independent fractionation, indicating that atmospheric oxygen was present at significant levels (that is, greater than 10(-5) times that of the present atmospheric level) during the deposition of these units. The presence of rounded pebbles of sideritic iron formation at the base of the Rooihoogte Formation and an extensive and thick ironstone layer consisting of haematitic pisolites and o?lites in the upper Timeball Hill Formation indicate that atmospheric oxygen rose significantly, perhaps for the first time, during the deposition of the Rooihoogte and Timeball Hill formations. These units were deposited between what are probably the second and third of the three Palaeoproterozoic glacial events.  相似文献   

15.
Ohmoto H  Watanabe Y  Kumazawa K 《Nature》2004,429(6990):395-399
It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before approximately 2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.  相似文献   

16.
Keller CB  Schoene B 《Nature》2012,485(7399):490-493
The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5?Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.  相似文献   

17.
Early oxygenation of the terrestrial environment during the Mesoproterozoic   总被引:2,自引:0,他引:2  
Parnell J  Boyce AJ  Mark D  Bowden S  Spinks S 《Nature》2010,468(7321):290-293
Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (~2.3?billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8?Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S?相似文献   

18.
Evolution of the continental crust   总被引:11,自引:0,他引:11  
Hawkesworth CJ  Kemp AI 《Nature》2006,443(7113):811-817
The continental crust covers nearly a third of the Earth's surface. It is buoyant--being less dense than the crust under the surrounding oceans--and is compositionally evolved, dominating the Earth's budget for those elements that preferentially partition into silicate liquid during mantle melting. Models for the differentiation of the continental crust can provide insights into how and when it was formed, and can be used to show that the composition of the basaltic protolith to the continental crust is similar to that of the average lower crust. From the late Archaean to late Proterozoic eras (some 3-1 billion years ago), much of the continental crust appears to have been generated in pulses of relatively rapid growth. Reconciling the sedimentary and igneous records for crustal evolution indicates that it may take up to one billion years for new crust to dominate the sedimentary record. Combining models for the differentiation of the crust and the residence time of elements in the upper crust indicates that the average rate of crust formation is some 2-3 times higher than most previous estimates.  相似文献   

19.
Som SM  Catling DC  Harnmeijer JP  Polivka PM  Buick R 《Nature》2012,484(7394):359-362
According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate. Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening or enhanced greenhouse gas concentrations. Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen. But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3?kg?m(-3), compared to today's 1.2?kg?m(-3), but because such drops rarely occur, air density was more probably below 1.3?kg?m(-3). The upper estimate for air density renders the pressure broadening explanation possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO(2) levels required for hot Archaean climates.  相似文献   

20.
The evolution of the Earth's atmosphere is marked by a transition from an early atmosphere with very low oxygen content to one with an oxygen content within a few per cent of the present atmospheric level. Placing time constraints on this transition is of interest because it identifies the time when oxidative weathering became efficient, when ocean chemistry was transformed by delivery of oxygen and sulphate, and when a large part of Earth's ecology changed from anaerobic to aerobic. The observation of non-mass-dependent sulphur isotope ratios in sedimentary rocks more than approximately 2.45 billion years (2.45 Gyr) old and the disappearance of this signal in younger sediments is taken as one of the strongest lines of evidence for the transition from an anoxic to an oxic atmosphere around 2.45 Gyr ago. Detailed examination of the sulphur isotope record before 2.45 Gyr ago also reveals early and late periods of large amplitude non-mass-dependent signals bracketing an intervening period when the signal was attenuated. Until recently, this record has been too sparse to allow interpretation, but collection of new data has prompted some workers to argue that the Mesoarchaean interval (3.2-2.8 Gyr ago) lacks a non-mass-dependent signal, and records the effects of earlier and possibly permanent oxygenation of the Earth's atmosphere. Here we focus on the Mesoarchaean interval, and demonstrate preservation of a non-mass-dependent signal that differs from that of preceding and following periods in the Archaean. Our findings point to the persistence of an anoxic early atmosphere, and identify variability within the isotope record that suggests changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet transparency of an evolving early atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号