首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
提出一种具有独立探头的反射式高双折射光子晶体光纤环镜结构,此结构利用乙醇的热光效应对光子晶体光纤双折射线性调制,双折射的改变引起Sagnac干涉系统光程差的变化,并导致光谱强度在某一温度区间随温度线性变化,实现了温度的高灵敏度测量.此结构克服了传统的环内结构易受外界扰动的缺点,并且使其在实际应用中搭建分布式传感系统成为可能.实验验证了乙醇的折射率随温度的线性变化规律,灵敏度为4.45e-4/℃;验证了填充乙醇后光子晶体光纤双折射与温度的变化规律,灵敏度为0.015 625/℃;验证了在20~40℃之间,输出光强随温度的变化规律,灵敏度为0.003 1 m W/℃.利用琼斯矩阵理论论证了干涉光谱的形成机理,得到干涉谱方程.  相似文献   

2.
光纤传感器作为光电子技术中的一个应用领域.广泛受到人们的重视。特别是具有高灵敏度的干涉型光纤传感技术得到了迅速的发展,并在军事、医学、电力和航空领域有着重要的应用。例如,基于Sagnac干涉效应的光纤陀螺仪已成为惯性导航系统中最重要的新兴器件;在高电压系统的测量中.光纤电流传感器已经逐步取代传统电磁型电流传感器。  相似文献   

3.
提出一种基于光子晶体微腔的高灵敏度的微力测量方法.首先,提出一种M型结构的梁作为传感探头,使系统在受到微力作用时,仅有光子晶体微腔的空气孔折射率发生变化而引起谐振波长的漂移,极大地提高了传感器的线性度和测量范围.然后,对微纳环结构的光子晶体微腔结构进行优化设计,获得了品质因子高达7100的微腔.最后,选择合适的实验器件及其特性参数,搭建基于光纤环形衰荡的波长解调系统,实验结果表明该系统的波长解调灵敏度为90μs/nm,所设计的微力测量系统的灵敏度可达194.616μs/μN.  相似文献   

4.
报道了一种罗丹明B衍生物(RM)填充的SiO2反蛋白石光子晶体薄膜作为荧光传感平台,实现了对Hg2+的高灵敏、高选择性、可重复性检测.RM与Hg2+发生专一的配位作用,其产物RM-Hg2+在585 nm处发射荧光.当所选光子晶体的光子禁带蓝带边与荧光波长重叠时,光子晶体的慢光子效应能够有效增强RM-Hg2+的荧光强度,...  相似文献   

5.
首次在实芯光子晶体光纤中制备了横向大偏置结构光纤马赫-曾德尔干涉仪折射率传感器,并理论分析了此种干涉仪的干涉机制和折射率传感特性,以及影响折射率传感特性的各种因素;搭建实验系统,测试了折射率传感特性。结果表明,腔长330 μm传感器的干涉谱对外部环境折射率变化的响应成线性,透射谱随环境介质折射率增大而向短波方向移动,灵敏度超过-15 100 nm/RIU,灵敏度与腔长长度无关,光子晶体光纤的气孔对折射率传感特性影响很小。此种高灵敏度的光纤微腔折射率传感器适用于液体或气体的快速检测领域。  相似文献   

6.
利用单模光纤的偏芯结构,提出了一种光纤干涉型高温传感器.光在通过传感区域时存在纤芯模与包层模的干涉.当温度变化时,根据干涉谷对温度的敏感性,即可实现温度测量.此传感器可用于高温测量,当温度从400℃上升到750℃时,干涉谷波长变化了32.2 nm,温度灵敏度为0.092 nm/℃.  相似文献   

7.
光子晶体光纤具有压力敏感性.分析了光子晶体光纤中光信号传播时相位随外界压力变化的关系,提出了一种测量光子晶体光纤传输信号的自动化系统.光子晶体光纤可广泛用于光纤传感系统中.  相似文献   

8.
以填充高热敏系数混合液体的六边形光子晶体光纤为温度传感载体,数值求解了受激布里渊散射的波动耦合方程组,从输出斯托克斯光的脉冲个数和功率解调出整个光纤上的温度分布信息.对比不同结构的光子晶体光纤和混合液体的不同配比,数值计算结果表明受激布里渊散射导致的脉冲时延对温度测量的影响可以忽略不计;当四层空气孔的直径均为0.9Λ,酒精和氯仿的体积比为1∶1时,温度分辨率最高,功率测量设备仅需要达到18.3dB的分辨率,这比传统的通过布里渊频移来解析温度变化在精度上提高了大约160倍.为今后研制更高精度的温度传感设备,提供了一定的理论基础.  相似文献   

9.
双光纤布拉格光栅温度和应变传感研究   总被引:8,自引:0,他引:8  
在对光纤布拉格光栅温度和应变传感原理分析的基础上,构建了一种易于实用化的,能够实现温度和应变双参量同时区分测量的双光纤布拉格光栅传感器结构,并建立了其传感模型,从而解决了光纤布拉格光栅传感器进一步发展的关键问题,即温度、应变交叉敏感问题.最后,在现有的实验条件下设计了该模型的传感实验系统.实验结果表明,当被测温度变化在10~65℃,轴向应变在50με~350με范围内时,测量结果与实际值很接近,从而证明了双光纤布拉格光栅结构传感模型的正确性,并为其深入研究和实用化奠定了一定的理论和实验基础.  相似文献   

10.
一种新型的光纤应变传感系统   总被引:1,自引:0,他引:1  
设计了一种新型的频分复用F-P腔光纤应变传感系统。采用白光光源,运用光干涉的原理,测量由于负载而引起的微应变,该种传感器可实现复用。  相似文献   

11.
以一种常见的光子晶体光纤为载体,利用金属填充物和纤芯周围折射率环境结构的不对称性,提出了一种基于表面等离子体共振效应的光子晶体光纤偏振滤波器性能优化设计方法.研究发现,通过对光子晶体光纤纤芯和金属填充物周围结构的特殊设计,可有效调控周围材料的有效折射率,以实现金属等离子体模式的双折射效应和光纤纤芯模式的双折射特性.因此,当纤芯模式和金属的表面等离子体模式满足相位匹配条件时,即可达到偏振滤波的效果,并获得很好的消光比,而不需要对光子晶体光纤的结构进行复杂设计,降低了器件制备难度,避免了所设计的光纤结构无法实现实际制备的问题.  相似文献   

12.
以光子晶体光纤(PCF)为研究对象,以提高气体测量灵敏度为研究目标,提出一种反射式的光纤气体传感技术.首先,利用宽谱光源谐波检测技术,并结合实际应用需求,设计了基于空芯PCF的反射式气体传感系统,并详细分析了系统的工作原理.然后,针对空芯PCF与单模光纤耦合困难、气体填充时间长的问题,设计了集密封、固定及连接于一体的机械耦合装置作为测量气室.最后,以乙炔气体为例,测试了该系统的传感特性,体积分数分辨力可达0.02%,最大相对误差为1.39%.该技术将进一步推动PCF在气体传感中的应用,并为其在实际气体浓度测量中的应用提供了理论和实验基础.  相似文献   

13.
从光子晶体光纤(PCF)与普通光纤在光纤结构上的差异出发,简要分析了PCF的导光原理与单模特性,探讨了基于PCF的光纤光栅的稳定性,基于聚合物填充多孔光纤的长周期光纤光栅的温度调谐性能,以及纯结构性非光敏纤芯长周期光子晶体光纤光栅的原理,从一个方面说明了光子晶体光纤的潜在应用。  相似文献   

14.
光子晶体光纤压力传感器在各种压力环境监测中具有极其重要的作用.文章提出了光子晶体光纤压力传感器系统模型和输出信号检测方案,设计了一种用多片高速运放并联的方式来对PCF压力传感器输出电信号的放大,采用双极型定时器5G555新型整形电路对PCF压力传感器输出电信号进行有效的整形,为了满足PCF压力传感器对信号的相位和幅频特性以及计算工具的条件等多方面的因素,提出了一种用MAX293实现的无源BiQuad滤波电路对传感器输出电信号进行滤波.采用我们提出的放大、整形和滤波电路系统可以优良检测PCF压力传感器输出信号.  相似文献   

15.
光子晶体光纤是近年来出现的一种新型光纤,其特点是包层排列有规则或随机分布的波长量级的空气孔。包层中的微结构使得光子晶体光纤能够呈现出许多传统光纤不具备的特性,其在光通信领域具有极大的应用前景。文章从光子晶体的概念出发,概述了光子晶体的特征,通过引入光子晶体光纤的概念,介绍了光子带隙型与全内反射型光子晶体光纤的基本结构及导光原理。同时文章简要分析了带隙型光子晶体光纤的各种主要理论研究方法,并对其做出了相应的评价。  相似文献   

16.
光子晶体光纤(PCF)与普通光纤相比有其优秀的特性,如单模特性、色散特性以及非线性特性等。简述了光子晶体光纤的基本结构及其优点,并介绍了利用光子晶体光纤制作光子晶体光纤激光器及大功率光纤激光器方面的进展。  相似文献   

17.
An Yb^3+-doped double-clad large-mode-area photonic crystal fiber (LMA PCF) laser with up to 210 W of continuous-wave output power centered at 1.05 lira is demonstrated. The length of the fiber used is 2 m and the produced laser power per meter can attain 105 W. The PCF is pumped by two diode lasers with central wavelength of 976 nm. The slope efficiency is 76%, and the beam quality factor M^2 at x and y axes are measured to be 1.06 and 1.08, respectively. No thermo-optical problems and other roll-over even are observed at the highest output power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号