首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
非均匀孔隙压力下水压致裂的数值试验   总被引:7,自引:1,他引:7  
运用数值试验方法研究了非对称分布的孔隙压力梯度下水力压裂裂缝的扩展行为 ,数值试验再现了孔隙水压作用下岩石微破裂诱致宏观破坏的演化过程·数值试验结果表明 ,水力压裂裂纹的扩展不仅受到裂纹尖端局部孔隙水压力大小的影响 ,同时也受控于宏观上孔隙水压梯度分布 ,在扩展方向上致裂裂纹往往偏向于高孔隙压力的区域 ,并且其压裂压力随着局部孔隙压力的增大而降低 ,数值试验研究结果与物理实验结果有较好的一致性  相似文献   

2.
基于流固耦合理论,在基于渗透率的水力压裂(PHF) 模型基础上建立了扩展渗透率的水力压裂(extended permeability-based hydraulic fracture,EPHF) 模型.该模型假设岩石材料在开裂过程中渗透率的改变为平均有效应力的函数,采用多孔介质弹性本构关系和Drucker-Prager塑性模型描述岩石材料开裂前后的力学行为,孔隙流体采用达西定律描述.引入LET模型和混合黏滞系数考虑等效开裂区域内由压裂液与原液体混合引起的渗透率修正.分析了抗拉强度对关键位置的水压力和应力路径发展过程的影响,以及等效开裂区域和裂缝高度随注水时间的变化过程.结果表明:裂缝路径上的点(不含注水点) 的水压力先降低后增加至传播压力;当有效应力差和初始水压力同时保持不变时或当总应力不变时,起裂压力随有效应力比的增加而降低.  相似文献   

3.
为研究资源开采中缝槽形态对水力压裂起裂及裂缝扩展规律的影响,解决因地质资源埋藏深、地下储层结构和应力水平复杂、水力压裂开采过程中所造成的钻孔压裂起裂压力大、起裂方位无序、压裂效果差异较大等问题,建立圆孔和椭圆缝槽的二维水力压裂钻孔模型,利用RFPA-Flow2D数值模拟软件,理论分析并结合数值模拟,对圆孔和椭圆2个缝槽形态的起裂机理和裂缝的扩展规律进行研究。结果表明:压裂裂缝的扩展延伸方向与施加的应力组合中的最大主应力方向平行,且当施加的应力组合差值不断减小时,裂缝的起裂压力随之逐渐增大;最大主应力平行于椭圆缝槽长轴时相较垂直于椭圆长轴时,裂缝更容易起裂;当应力差减小至零时,对比椭圆缝槽,圆孔缝槽的裂纹扩展出现了随机分叉的现象;在应力组合相同的条件下,椭圆缝槽相比圆孔缝槽的起裂压力更小,椭圆缝槽更容易起裂。  相似文献   

4.
为研究预置裂纹对水力裂缝扩展行为的影响,利用基于扩展有限元法的虚拟裂纹闭合技术计算能量释放率,借鉴PFC参数标定的思想,提出一种依据水压与裂尖能量释放率的关系反演材料断裂能的方法.将此方法计算出的断裂能作为材料参数,得到的起裂水压模拟值,与相关文献及水力压裂试验值对比,误差均不超过7%,证明了方法的可靠性.在此基础上研究水压注入预置裂纹时水力裂缝的力学行为,采用最大能量释放率准则,分析了围压应力和预置裂纹初始倾角对水力裂纹起裂与扩展的影响.结果表明,对于类岩石内斜裂纹,在水压作用下发生拉剪破坏,水力裂纹朝向裂纹前端拉应力等值线距离裂纹尖端最近的方向进行扩展,该方向径向切应力为0;相比于地应力,预置裂纹倾角对水力裂纹起裂水压力的影响较大,因此应主要通过改变注射角或者选择45°~60°的天然弱面进行压裂,从而降低工程成本.  相似文献   

5.
为揭示非均匀孔隙压力场对水压裂纹扩展的影响,采用多孔弹性力学、断裂力学、渗流力学和热弹性力学理论,建立了考虑孔隙压力的水压裂纹尖端应力强度因子计算模型,并采用室内实验和RFPA2DFlow数值模拟软件进一步分析了非均匀孔隙压力场对水压裂缝扩展的导向机制.研究结果表明:孔隙压力场的存在可以增大水压裂纹尖端的应力强度因子,从而诱导水压裂缝沿高孔隙压力方向扩展;同时,水压裂纹尖端的应力强度因子会随着孔隙压力增大而增大,孔隙压力越大,裂纹的偏转幅度也会越大.  相似文献   

6.
对裂缝性地层中的水平井进行水力压裂时,井筒附近的天然裂缝会对压裂产生影响。现有压裂裂缝起裂压力计算模型所考虑的影响因素各有侧重,且尚未考虑井筒附近天然裂缝产生的诱导应力场对起裂压力造成的影响。本文基于弹性力学及岩石力学理论,综合考虑了井筒周围天然裂缝的诱导应力、压裂液渗滤效应、岩石温度变化、封隔器影响等因素,建立了一个适用于裂缝性地层中的水平井压裂裂缝起裂压力计算模型,且计算简便便于推广。本文根据实例计算分析了天然裂缝影响起裂压力的各个因素,并进行了对比。计算结果表明,一定条件下井筒周围天然裂缝对起裂压力影响明显,采用以前的起裂压力计算模型误差较大。  相似文献   

7.
岩石水压致裂影响参数的仿真   总被引:2,自引:0,他引:2  
针对影响水压致裂实验中起裂和失稳压力变化的诸多因素,通过RFPA2D-Flow数值仿真实验,建立了水压致裂模型,研究了孔隙水压力系数、围压比及非均匀性等因素对水压致裂的影响.研究结果表明,试件孔隙水压力系数及围压比的变化对水压致裂起裂压力和失稳压力影响明显;随着孔隙水压力系数的增大,岩石试件的起裂压力和失稳压力都随之减小,最大降幅可达37%;而围压比从1.0增加到1.5过程中,起裂压力和失稳压力降低了大约16%.分析结果对水压致裂施工设计及研究具有一定的参考价值.  相似文献   

8.
井下煤层水力压裂裂缝导向机理及方法   总被引:2,自引:1,他引:1  
针对井下煤层水力压裂裂缝扩展无序导致抽采效率低的问题,提出水力压裂裂缝导向方法,即采用高压水射流割定向缝导向裂缝起裂及扩展。在压裂孔周边合理布置导向钻孔,压裂孔及导向钻孔均采用水射流割缝技术在煤孔中形成定向缝隙。在地应力作用下缝隙尖端形成剪切破坏区,在内水压的作用下裂缝在缝隙尖端起裂;通过计算射流割缝缝隙水平延长方向最大主应力方向得出,裂缝在尖端起裂后沿水平方向延伸;在此基础上研发了裂缝导向技术工艺,即钻孔布置工艺、封孔工艺及压裂工艺,并成功应用于典型低透气性煤层;试验结果表明:该方法能够导向裂缝的延伸,压裂半径为25 m以上;抽采数据表明瓦斯抽放平均浓度为68%,单孔平均抽放纯量为0.037m3/min;采用裂缝导向技术后相比普通孔瓦斯抽放纯量提高了11.26倍,抽放浓度提高了2.12倍。  相似文献   

9.
大斜度井多簇水力压裂技术是开发低渗透油气田的有效手段,但压裂过程中出现的裂缝转向、应力干扰问题使得裂缝扩展形态十分复杂。本文基于全局粘聚区模型建立大斜度井3条裂缝同时扩展的有限元数值模拟,对不同井斜角、原位应力差条件下的裂缝注入点压力、裂缝形态进行研究。研究表明:当井斜角由20°增大至80°时,裂缝起裂逐渐变难,起裂压力增幅达47.38%,且中缝受边缝的干扰程度降低;裂缝形态由初始沿射孔方向延伸逐渐转向至沿垂向应力方向,且当井斜角等于60°时3条裂缝合并成一条主裂缝。当地应力差由0 MPa增大至5 MPa时,3簇裂缝的起裂压力逐渐降低,且中缝受边缝应力干扰程度增加;裂缝形态由沿着3条初始射孔方向延伸不发生明显裂缝转向,到起裂于初始损伤区之后迅速发生裂缝转向。该有限元计算模型可对现场大斜度井多簇水力压裂施工提供一定参考。  相似文献   

10.
油井水力压裂的三维数值模拟   总被引:8,自引:1,他引:7  
为了研究油层岩石在水力载荷作用下的裂纹扩展及渗流行为,采用渗流应力耦合模型对水力压裂过程进行了三维有限元方法数值模拟研究.预设裂纹用粘结单元来模拟,裂纹的起裂和张开用单元的损伤因子表征.为了使得在裂纹扩展过程中,流体压力能随裂纹扩展动态地跟踪加载到裂纹面上,给出了流体压力在裂纹内传递的模型,并编写用户子程序予以实现.模拟结果得到了水力压裂过程中岩石中的应力分布、孔隙压力分布、压裂液的滤失以及裂缝的几何形态.分析了压力和隔层等因素对裂纹几何形态的影响.该研究结果对石油工程中压裂方案设计及故障诊断有一定的理论参考价值.  相似文献   

11.
针对由水力裂缝触发的裂隙性储层涌水、突水等地质问题,首先根据弹性力学原理和断裂力学强度准则,基于储层原生裂缝几何特性和压裂液渗流规律,建立了垂直井工况下的起裂压力计算模型;其次考虑煤储层的损伤本构关系,将Dougill损伤因子与起裂压力公式相结合,进一步建立了延伸压力的计算模型;应用经典的PKN模型以及裂缝内净压力的非线性压降规律,建立了改进的压裂缝扩展延伸模型.该模型揭示了裂缝性储层压裂长度L与压裂时间t之间的非线性关系,显示出压裂缝的延伸距离随时间的增加而增长,但前期增长较快,后期基本趋于稳定.豫北焦作恩村区块三口试验井的计算结果,与邻区位村区块微地震实测资料契合度较高,从而验证了理论模型的正确性,为现场压裂参数控制以及防治压裂缝突水提供了可靠的技术支撑.  相似文献   

12.
针对水力压裂条件下煤层气井初始压裂缝转向问题,首先基于断裂力学原理与最大周向应力准则,分析了储层原始地应力场和压裂液渗透场时空演化规律,建立了裂缝转向起始模型,并考虑转向裂缝面复杂的应力边界条件,利用位移不连续法建立了裂缝转向扩展模型;其次着重考虑了射孔角度、地应力差及施工排量对压裂缝转向扩展的影响,结合焦作恩村矿区现场施工参数,分别计算了裂缝起偏角度和偏转距离。计算结果表明:水力压裂条件下,射孔角度与地应力差对近井区压裂缝转向影响较大,而压裂液排量则影响较小;当射孔角度或地应力差较小,压裂缝偏转距 离较大,形成的压裂缝曲率也较小;反之亦然。最后运用XFEM软件模拟裂缝转向扩展机制,经与计算结果对比,发现二者较为吻合,从而验证了理论模型的正确性,研究成果可为定向射孔水力压裂现场控制提供理论指导。  相似文献   

13.
 斜井的近井筒效应较为复杂,若存在射孔相位误差,极易在地层和水泥环交界面处产生微环隙,引起较高的近井压降,甚至在微环隙内产生砂堵,造成压裂施工失败。对于斜井水力压裂裂缝三维几何形态的预测,一直是水力压裂领域的难题。本文采用黏弹性损伤cohesive孔压单元,考虑套管、水泥环、地层、射孔孔眼和微环隙对水力压裂的影响,建立了斜井的水力压裂三维裂缝形态的有限元模型。同时,考虑水力压裂过程中储层岩石渗透率和孔隙度的动态演变,对渤海湾地区20°井斜角的C5井开展了水力压裂裂缝动态扩展的数值模拟研究,计算得到的井底压力曲线与现场施工曲线一致。研究了斜井水力裂缝和微环隙的起裂和扩展机理。微环隙在水力压裂的初始阶段沿井眼周向和轴向同时起裂并扩展,随着水力裂缝的扩展而逐渐闭合,对于具有较复杂近井筒效应的硬地层大斜度井而言,微环隙的起裂和多条裂缝的产生,极易导致压裂失败。斜井水力裂缝近似两翼对称,易向地应力较小的盖层扩展,缝高较难控制。数值模拟结果为现场水力压裂的设计提供理论指导。  相似文献   

14.
采用PHF-LSM(permeability-based hydraulic fracture-level set method)水力压裂数值计算模型,模拟并分析了均质与分层岩石材料中分段压裂过程引起的应力阴影效应.通过与单一裂缝诱发应力理论解的对比,验证了PHF-LSM考虑应力阴影效应的可行性.以此模型为基础分析了单一裂缝发展过程中,岩石材料参数与初始应力条件对诱发应力场的影响,以及均质与分层岩石材料的多裂缝起裂过程中不同压裂间距与压裂顺序产生的应力阴影效应.数值计算结果表明:泊松比、抗拉强度与孔隙率的增加会增大裂缝引起的诱发应力与净压力比值的峰值,而弹性模量和水平主应力差的增大会减小该峰值;裂缝间距的扩大可以减弱裂缝间应力阴影效应;两步压裂与顺序压裂的裂缝总面积均大于同时压裂时的面积,但顺序压裂与两步压裂会带来更高的起裂压力;产层厚度与压裂间距的减小会增大应力阴影效应.  相似文献   

15.
水平井压裂裂缝起裂及裂缝延伸规律研究   总被引:3,自引:0,他引:3  
水平井压裂可以有效提高低渗透油气藏水平井的采油速度和最终采收率,裂缝起裂和裂缝延伸规律是水平井压裂的关键问题之一.建立了水平井压裂裂缝起裂压力计算模型,通过分析求解模型可以得出:井筒方位角不同,最小水平主应力和垂直主应力对裂缝的起裂压力影响规律不同,在井筒方位角为0°时最不容易起裂,而在井筒方位角为90°时最容易起裂;对比分析了现有裂缝延伸模型,得出全三维裂缝延伸模型适合水平井压裂裂缝延伸模拟;分析了产层和盖层的应力差对裂缝缝高的影响,计算结果表明,当隔层与产层的应力差大于5MPa时,裂缝被限制在产层内.  相似文献   

16.
利用扩展有限单元法在求解不连续问题上的独有优势,在裂纹面以水压力方式模拟水力劈裂荷载,以解决裂纹扩展时涉及裂纹面非线性和移动边界问题.针对某待建混凝土重力坝,通过ABAQUS软件建立黏聚力裂纹扩展模型模拟水力劈裂,采用上游超载静水压力模拟高水压作用,研究不同裂纹长度、角度及裂纹面水压力对裂纹扩展的影响.结果表明:在相同...  相似文献   

17.
在具有塑性特征的地层中,岩石的塑性变形对水力压裂裂缝形态的影响显著,传统压裂模型大多未考虑塑性对裂缝起裂和延伸的影响。因此,考虑地层岩石弹塑性变形、粘性压裂液流动与裂缝扩展的非线性耦合,建立了弹塑性地层中压裂裂缝扩展的数值计算模型,对弹塑性地层中压裂裂缝扩展行为进行了数值模拟研究,探索了塑性变形对裂缝扩展特性的影响。结果表明弹塑性地层裂缝扩展过程中裂缝尖端附近会产生显著的塑性变形,与仅考虑弹性的计算结果相比,压裂地层所需的裂缝扩展压力更高,且形成的裂缝相对更短、更宽。通过数值模拟计算,分析了地层岩石强度、压裂液粘度及注入速率对地层中压裂裂缝扩展的影响,表明地层强度对裂缝扩展行为影响显著,强度越低,塑性变形程度越大,裂缝扩展压力越高,同时裂缝长度越短,宽度越宽。压裂液粘度对裂缝扩展影响相对较小,而在总注入流量相同的情况下,压裂液注入速率对裂缝扩展的影响不明显。  相似文献   

18.
随着页岩气的开发,对已有水平井井网加密将会是后期开发的关键。老井的持续开采会引起地层孔隙压力和地应力的重新分布,地应力的重新分布对裂缝扩展行为和路径造成显著影响。为了探究地应力的重新布对裂缝扩展行为的影响机制,本文基于块体离散元数值模拟方法,针对老井开采后地应力场变化对加密井水力裂缝扩展的影响特征开展研究。本研究综合考虑了注液速率,压裂液粘度、地应力梯度和初始地应力场等因素对水力裂缝扩展的影响。结果表明,老井引起的地应力降低会导致新井水力裂缝向老井偏移。提高注液速率,增大压裂液粘度可以有效降低地应力非均匀导致的水力裂缝偏移问题。地应力梯度越大、初始地应力越高,水力裂缝的偏移率越高。本研究对页岩气水平井加密方案制定具有一定的理论指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号