首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases.  相似文献   

2.
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin–proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.  相似文献   

3.
The biology of cell locomotion within three-dimensional extracellular matrix   总被引:22,自引:0,他引:22  
Cell migration in three-dimensional (3-D) extracellular matrix (ECM) is not a uniform event but rather comprises a modular spectrum of interdependent biophysical and biochemical cell functions. Haptokinetic cell migration across two-dimensional (2-D) surfaces consists of at least three processes: (i) the protrusion of the leading edge for adhesive cell-substratum interactions is followed by (ii) contraction of the cell body and (iii) detachment of the trailing edge. In cells of flattened morphology migrating slowly across 2-D substrate, contact-dependent clustering of adhesion receptors including integrins results in focal contact and stress fiber formation. While haptokinetic migration is predominantly a function of adhesion and deadhesion events lacking spatial barriers towards the advancing cell body, the biophysics of the tissues require a set of cellular strategies to overcome matrix resistance. Matrix barriers force the cells to adapt their morphology and change shape and/or enzymatically degrade ECM components, either by contact-dependent proteolysis or by protease secretion. In 3-D ECM, in contrast to 2-D substrate, the cell shape is mostly bipolar and the cytoskeletal organization is less stringent, frequently lacking discrete focal contacts and stress fibers. Morphologically large spindle-shaped cells (i.e., fibroblasts, endothelial cells, and many tumor cells) of high integrin expression and strong cytoskeletal contractility utilize integrin-dependent migration strategies that are coupled to the capacity to reorganize ECM. In contrast, a more dynamic ameboid migration type employed by smaller cells expressing low levels of integrins (i.e., T lymphocytes, dendritic cells, some tumor cells) is characterized by largely integrin-independent interaction strategies and flexible morphological adaptation to preformed fiber strands, without structurally changing matrix architecture. In tumor invasion and angiogenesis, migration mechanisms further comprise the migration of entire cell clusters or strands maintaining stringent cell-cell adhesion and communication while migrating. Lastly, cellular interactions, enzyme and cytokine secretion, and tissue remodeling provided by reactive stroma cells (i.e. fibroblasts and macrophages) contribute to cell migration. In conclusion, depending on the cellular composition and tissue context of migration, diverse cellular and molecular migration strategies can be developed by different cell types.  相似文献   

4.
5.
Calmodulin mediates melatonin cytoskeletal effects   总被引:6,自引:0,他引:6  
In this article, we review the data concerning melatonin interactions with calmodulin. The kinetics of melatonin-calmodulin binding suggest that the hormone modulates cell activity through intracellular binding to the protein at physiological concentration ranges. Melatonin interaction with calmodulin may allow the hormone to modulate rhythmically many cellular functions. Melatonin's effect on tubulin polymerization, and cytoskeletal changes in MDCK and N1E-115 cells cultured with melatonin, suggest that at low concentrations (10–9 M) cytoskeletal effects are mediated by its antagonism to Ca2+-calmodulin. At higher concentrations (10–5 M), non-specific binding of melatonin to tubulin occurs thus overcoming the specific melatonin antagonism to Ca2+-calmodulin. Since the structures of melatonin and calmodulin are phylogenetically well preserved, calmodulin-melatonin interaction probably represents a major mechanism for regulation and synchronization of cell physiology.  相似文献   

6.
7.
8.
S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin β1 transduce some extracellular S100A6’s effects. Dosage of serum S100A6 might aid in diagnosis in oncology.  相似文献   

9.
Focal adhesions are cellular structures through which both mechanical forces and regulatory signals are transmitted. Two focal adhesion-associated proteins, Crk-associated substrate (CAS) and vinculin, were both independently shown to be crucial for the ability of cells to transmit mechanical forces and to regulate cytoskeletal tension. Here, we identify a novel, direct binding interaction between CAS and vinculin. This interaction is mediated by the CAS SRC homology 3 domain and a proline-rich sequence in the hinge region of vinculin. We show that CAS localization in focal adhesions is partially dependent on vinculin, and that CAS–vinculin coupling is required for stretch-induced activation of CAS at the Y410 phosphorylation site. Moreover, CAS–vinculin binding significantly affects the dynamics of CAS and vinculin within focal adhesions as well as the size of focal adhesions. Finally, disruption of CAS binding to vinculin reduces cell stiffness and traction force generation. Taken together, these findings strongly implicate a crucial role of CAS–vinculin interaction in mechanosensing and focal adhesion dynamics.  相似文献   

10.
Microtubules are fibrous elements in the cytoplasm of eukaryotic cells, where they perform a wide variety of functions. Microtubules are major organizers of the cell interior and are vitally involved in motility events such as chromosome migration during cell division. To fulfill their physiological function, microtubule arrays have to undergo dramatic changes in their spatial arrangement, and this depends to a large extent on the complex and special dynamic properties of the individual polymers. In this review we first describe the intrinsic dynamic properties of microtubules assembled in vitro from purified tubulin and examine the relationships between these properties and microtubule functions. Subsequent sections concern microtubule dynamics in vivo, their similarity and differences with microtubule dynamics in vitro, and the nature of the cellular regulators which act on microtubule assemblies in physiological conditions. Received 2 May 2001; received after revision 10 July 2001; accepted 10 July 2001  相似文献   

11.
Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the “annexin core”, which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.  相似文献   

12.
13.
Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.  相似文献   

14.
15.
The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family’s role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs’ expression is not well understood; however, let-7 microRNAs, β-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of ‘classical’ in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.  相似文献   

16.
The serine/threonine protein phosphatase 2A (PP2A) represents a large family of highly conserved heterotrimeric enzymes. Their critical importance in cell homeostasis is underlined by the fact that they are targets of natural toxins like the tumor promoter okadaic acid, and of simian virus 40 small tumor antigen (SV40 small t), a viral protein known to promote cell transformation. Furthermore, mutated or lower expression levels of PP2A subunits have been found in certain cancers. One major known event in PP2A-dependent cell transformation is the alteration of key signaling pathways that control cell growth and survival. In this review, we focus on how PP2A enzymes also affect cell adhesion and cytoskeletal dynamics, the disruption of which is linked to loss of cell polarity, increased cell motility and invasiveness. We also examine how those various pathways participate in the transforming activity of SV40 small t. Received 29 June 2006; received after revision 3 August 2006; accepted 20 September 2006  相似文献   

17.
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these “ciliary” proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes’ influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of “cilia” proteins as a means to demonstrate the potential non-ciliary roles for these proteins.  相似文献   

18.
19.
The superfamily of armadillo repeat proteins is a fascinating archetype of modular-binding proteins involved in various fundamental cellular processes, including cell–cell adhesion, cytoskeletal organization, nuclear import, and molecular signaling. Despite their diverse functions, they all share tandem armadillo (ARM) repeats, which stack together to form a conserved three-dimensional structure. This superhelical armadillo structure enables them to interact with distinct partners by wrapping around them. Despite the important functional roles of this superfamily, a comprehensive analysis of the composition, classification, and phylogeny of this protein superfamily has not been reported. Furthermore, relatively little is known about a subset of ARM proteins, and some of the current annotations of armadillo repeats are incomplete or incorrect, often due to high similarity with HEAT repeats. We identified the entire armadillo repeat superfamily repertoire in the human genome, annotated each armadillo repeat, and performed an extensive evolutionary analysis of the armadillo repeat proteins in both metazoan and premetazoan species. Phylogenetic analyses of the superfamily classified them into several discrete branches with members showing significant sequence homology, and often also related functions. Interestingly, the phylogenetic structure of the superfamily revealed that about 30 % of the members predate metazoans and represent an ancient subset, which is gradually evolving to acquire complex and highly diverse functions.  相似文献   

20.
Gelsolin superfamily proteins: key regulators of cellular functions   总被引:10,自引:0,他引:10  
Cytoskeletal rearrangement occurs in a variety of cellular processes and involves a wide spectrum of proteins. Among these, the gelsolin superfamily proteins control actin organization by severing filaments, capping filament ends and nucleating actin assembly [1]. Gelsolin is the founding member of this family, which now contains at least another six members: villin, adseverin, capG, advillin, supervillin and flightless I. In addition to their respective role in actin filament remodeling, these proteins have some specific and apparently non-overlapping particular roles in several cellular processes, including cell motility, control of apoptosis and regulation of phagocytosis (summarized in table 1). Evidence suggests that proteins belonging to the gelsolin superfamily may be involved in other processes, including gene expression regulation. This review will focus on some of the known functions of the gelsolin superfamily proteins, thus providing a basis for reflection on other possible and as yet incompletely understood roles for these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号