首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
量子纠缠态及可分离态判据   总被引:4,自引:1,他引:4  
由信息熵理论结合量子力学态矢的特性,提出独立态矢的概念,给出了多粒子量子位纯态纠缠的新定义,指出量子纠缠态实质上是独立态矢的叠加,并进一步给出自旋为1/2的二、四量子位体系纯态的非纠缠态判据。其计算方法简单,物理意义明确。  相似文献   

2.
提出了一个几率远程制备三粒子纠缠态的方案,在该方案中,三个非最大两粒子纠缠态被用作量子信道,并运用了三粒子投影测量,所需的经典资源是三个经典比特.  相似文献   

3.
提出了一个较好的远程制备多粒子的纠缠态的方案,先讨论用(N+1)粒子的纠缠态作为量子通信信道制备2N粒子的纠缠态.然后在研究用一个(N+1)粒子的纠缠态和一个(N+2)粒子的纠缠态作为量子通信信道制备(2N+1)粒子的纠缠态.与现在已有人提出的制备多粒子的纠缠态的方案相比,这个方案的优点是仅花费了两位经典位和只有一次两粒子的投影测量.  相似文献   

4.
提出利用一个三粒子纠缠GHZ态和两个二粒子纠缠态作为量子信道,实现任意的三粒子纠缠态从发送者传送给两个接收者中任意一个的量子隐形传态的方案.首先考察量子信道是最大纠缠态的情形,然后进一步考察量子信道是非最大纠缠态的情形.在量子信道为非最大纠缠态时,通过引进一个辅助粒子,并构造一个幺正变换矩阵,可以8 bdf 2概率成功地隐形传送任意的三粒子纠缠态.  相似文献   

5.
基于团簇态信道的双粒子纠缠态可控量子隐形传态   总被引:2,自引:2,他引:0  
提出利用四粒子团簇态传送一个未知两粒子纠缠态从而实现可控量子隐形传态的方案,发送者对她自己拥有的3个粒子做一次三粒子纠缠完备基联合测量,控制者对其拥有的粒子作局域测量,接收者在控制者的帮助下对其自己拥有的两粒子做相应的幺正变换,即可重新构造出发送者要传送的未知态,完成了可控量子隐形传态.  相似文献   

6.
四粒子纠缠W态的概率隐形传输   总被引:7,自引:0,他引:7  
提出利用2个二粒子部分纠缠态作为量子信道,实现四粒子纠缠W态的概率隐形传输方案.发送者做3次幺正变换和2次Bell基测量,然后接收者通过引入辅助粒子并做适当的幺正变换,就能以一定的概率完成四粒子纠缠W态的隐形传输.  相似文献   

7.
任意两粒子态的概率隐形传输   总被引:1,自引:1,他引:0  
利用部分纠缠的两粒子纠缠态及部分纠缠的三粒子W态作为量子信道,提出了对任意的两粒子态的概率隐形传态方案,其最大传输概率为2/3.  相似文献   

8.
本文利用七粒子最大纠缠态实现了任意三粒子态的一般隐形传态和控制隐形传态.在一般隐形传态过程中,发送者对自己所拥有的粒子执行正交完备基测量,然后将测量结果告诉接收者,接收者对他的粒子执行相应的幺正变换就可以恢复出初始态.在控制隐形传态过程中,发送者对需传送的三粒子与自己手中的粒子分别进行适当的Bell基测量,控制方对手中的粒子进行单比特测量,然后他们将测量结果告诉接收者,接收者对自己拥有的三粒子进行相应的幺正操作就可以恢复出初始态.  相似文献   

9.
给出了量子通道为三能级三粒子非最大纠缠态的概率密集编码方案.通过引入辅助粒子,进行联合幺正变换,三能级三粒子非最大纠缠态的量子密集编码以一定概率实现.将三能级三粒子的编码方案推广到三能级多粒子态,实现了三能级粒子的多方通信;计算各方案的平均传输效率并与二能级粒子的进行比较.  相似文献   

10.
欧阳坤 《江西科学》2012,30(4):432-433,462
提出利用一个三粒子纠缠态作为量子信道的受控密集编码方案。结果表明:监控者通过调节其测量角可以控制发送者的信息发送能力。  相似文献   

11.
Zhao Z  Chen YA  Zhang AN  Yang T  Briegel HJ  Pan JW 《Nature》2004,430(6995):54-58
Quantum-mechanical entanglement of three or four particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is required for universal quantum error correction. Another key process in distributed quantum information processing, similar to encoding and decoding, is a teleportation protocol that we term 'open-destination' teleportation. An unknown quantum state of a single particle is teleported onto a superposition of N particles; at a later stage, this teleported state can be read out (for further applications) at any of the N particles, by a projection measurement on the remaining particles. Here we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation (for N = 3). In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single-photon state. Our experimental methods can be used for investigations of measurement-based quantum computation and multi-party quantum communication.  相似文献   

12.
分析了横磁场中各向同性XY自旋链的基态能量和纠缠问题。研究发现,三量子比特系统中存在一个相变点,此点上,基态能量和纠缠可发生量子相变,基态从W态进入非纠缠;而四量子比特系统存在两个相变点,基态的能量和纠缠均可在相变点处发生量子相变,使纠缠性质发生改变。随着磁场强度的增大,基态纠缠逐渐减小,直到完全消失。四比特系统纠缠的减小要比三比特系统纠缠减小的速度缓慢。  相似文献   

13.
Scalable multiparticle entanglement of trapped ions   总被引:2,自引:0,他引:2  
The generation, manipulation and fundamental understanding of entanglement lies at the very heart of quantum mechanics. Entangled particles are non-interacting but are described by a common wavefunction; consequently, individual particles are not independent of each other and their quantum properties are inextricably interwoven. The intriguing features of entanglement become particularly evident if the particles can be individually controlled and physically separated. However, both the experimental realization and characterization of entanglement become exceedingly difficult for systems with many particles. The main difficulty is to manipulate and detect the quantum state of individual particles as well as to control the interaction between them. So far, entanglement of four ions or five photons has been demonstrated experimentally. The creation of scalable multiparticle entanglement demands a non-exponential scaling of resources with particle number. Among the various kinds of entangled states, the 'W state' plays an important role as its entanglement is maximally persistent and robust even under particle loss. Such states are central as a resource in quantum information processing and multiparty quantum communication. Here we report the scalable and deterministic generation of four-, five-, six-, seven- and eight-particle entangled states of the W type with trapped ions. We obtain the maximum possible information on these states by performing full characterization via state tomography, using individual control and detection of the ions. A detailed analysis proves that the entanglement is genuine. The availability of such multiparticle entangled states, together with full information in the form of their density matrices, creates a test-bed for theoretical studies of multiparticle entanglement. Independently, 'Greenberger-Horne-Zeilinger' entangled states with up to six ions have been created and analysed in Boulder.  相似文献   

14.
Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830?±?80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.  相似文献   

15.
纠缠的冯纽曼熵测量被用于研究球分数霍尔效应。数值计算表明,球分数霍尔效应为最大纠缠态。当系统中粒子数较多时,纠缠度的值(E)可用霍尔效应的填充因子(ν)表示:E~log21ν。  相似文献   

16.
Choi KS  Goban A  Papp SB  van Enk SJ  Kimble HJ 《Nature》2010,468(7322):412-416
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.  相似文献   

17.
Many-particle entanglement with Bose-Einstein condensates   总被引:9,自引:0,他引:9  
Sørensen A  Duan LM  Cirac JI  Zoller P 《Nature》2001,409(6816):63-66
The possibility of creating and manipulating entangled states of systems of many particles is of significant interest for quantum information processing; such a capability could lead to new applications that rely on the basic principles of quantum mechanics. So far, up to four atoms have been entangled in a controlled way. A crucial requirement for the production of entangled states is that they can be considered pure at the single-particle level. Bose-Einstein condensates fulfil this requirement; hence it is natural to investigate whether they can also be used in some applications of quantum information. Here we propose a method to achieve substantial entanglement of a large number of atoms in a Bose-Einstein condensate. A single resonant laser pulse is applied to all the atoms in the condensate, which is then allowed to evolve freely; in this latter stage, collisional interactions produce entanglement between the atoms. The technique should be realizable with present technology.  相似文献   

18.
把单电子系统的量子纠缠concurrence的计算公式推广到双电子系统,通过详细的推导,得到了任意两个格点间concurrence的计算公式,并且指出可以通过计算双电子系统的格点平均及谱平均concurrence这两个物理量,来研究粒子间的相互作用对量子纠缠的影响,以及利用量子纠缠这一物理量来研究双电子态的局域性问题.  相似文献   

19.
Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such 'entangled' states explicitly demonstrate the non-local character of quantum theory, having potential applications in high-precision spectroscopy, quantum communication, cryptography and computation. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited--and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.  相似文献   

20.
We present a quantum key distribution protocol based on four-level particle entanglement. Furthermore, a controlled quantum key distribution protocol is proposed using three four-level particles. We show that the two protocols are secure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号