首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用石墨烯的电导率可调特性设计了一种超宽带可调超材料吸波体。模拟计算了不同石墨烯费米能级时吸波体的吸收率,结果表明,当石墨烯费米能级为0.7 eV时,吸波体在1.74 GHz ~10.44 GHz 的吸收率保持在90%以上,实现了电磁波的超宽带吸收;当改变外加电压使石墨烯的费米能级从0.7 eV逐渐减少到0 eV时,吸波体在1.74 GHz~10.44 GHz的吸收率逐渐下降,其调制深度可达53.8%,实现了吸收率可调的功能;通过对表面电流分布进行仿真与分析,阐述了其电磁波宽带吸收及吸收率可调的机理;模拟分析了石墨烯费米能级为0.7 eV时,入射波极化状态和入射角度对吸波体吸收特性的影响,结果表明,由于结构单元的旋转对称性,吸波体的吸收特性具有极化不敏感的特点;随着电磁波入射角度的增大,其吸收率逐渐降低。  相似文献   

2.
基于柔性光学透明的ITO导电薄膜和PDMS介质,设计了适用于77GHz车载毫米波雷达电磁屏蔽的超材料吸波体.吸波体在74GHz~78GHz范围内的吸收率超过了90%,中心频率77GHz处的吸收率达到了98%.仿真证实该吸波体的吸收特性具有极化不敏感的特点.吸波体具有结构简单、柔性、光学透明和极化无关的优点,在77GHz车载毫米波雷达电磁屏蔽中具有重要的应用价值.  相似文献   

3.
基于石墨烯的光电特性设计了一种光学透明、柔性和宽带可调的低频段超材料吸波体,同时采用商业电磁仿真软件CST Microwave studio对不同石墨烯费米能级下吸波体的吸收特性进行了计算.结果表明:当石墨烯费米能级为OeV时,吸波体在600 MHz~1 GHz的范围内其吸收率超过了90%;改变电压可以改变石墨烯的费米能级,从而可以调节其吸收率.此外,通过仿真证实,吸波体具有极化不敏感和宽入射角度的吸收特性,同时,其也具有吸收率高、柔性、可见光透明和宽带可调等优点,因此其在低频段电磁隐身、探测和传感等领域具有潜在的应用价值.  相似文献   

4.
利用VO_2(二氧化钒)薄膜的电导率可调特性设计了一种太赫兹波段可调超宽带超材料吸波体.首先,模拟计算了不同温度时吸波体的吸收率,结果表明,当温度为45℃时吸波体在2.854 THz~8.938 THz的吸收率保持在90%以上,实现了电磁波的超宽带吸收;当温度从45℃逐渐增加到80℃时,吸波体在2.854 THz~8.938 THz的吸收率逐渐下降,实现了吸收率可调的功能;其次,通过对表面电流分布进行监控与分析,阐述了其电磁波宽带吸收及吸收率可调的机理;最后,模拟分析了温度为45℃时,入射波极化状态和入射角度对吸波体吸收特性的影响.结果表明,由于结构单元的旋转对称性,吸波体的吸收特性具有极化不敏感的特点;随着电磁波入射角度的增大,其吸收率逐渐降低.  相似文献   

5.
设计了一种基于双层电阻膜的宽频带、极化不敏感和宽入射角的超材料吸波体,该吸波体结构单元依次由圆环电阻膜、介质基板、圆环电阻膜、介质基板和金属背板组成。采用时域有限差分算法对其进行数值模拟分析,仿真得到的反射率和吸收率表明:该吸波体在11.5~20.3 GHz范围内对入射电磁波有大于90%以上的强吸收特性。仿真得到的不同极化角和不同入射角表明该吸波体具有极化不敏感和宽入射角特性。进一步仿真得到各个结构参数对吸收率的影响表明:该双层电阻膜结构吸波体对电磁波的吸收主要是基于电路谐振机制,通过对介质基板厚度和电阻膜宽度、电阻值的设计可以对频率范围和工作带宽进行调节,使吸波体实现超宽带吸收。  相似文献   

6.
为了实现太赫兹波调制器件对太赫兹波的快速响应,设计一种基于二氧化钒(VO_2)电阻膜的太赫兹波段宽带可调谐超材料吸波体,研究不同温度时吸波体的吸收率,并通过监控表面电流分布,分析吸波体宽带吸收以及可调吸收的机理。结果表明:吸波体在温度为35℃时表现出宽带吸收特性,吸收率大于90%的频段频率为6.508~9.685 THz,带宽为3.177 THz,通过改变温度可以实现吸波体吸收率的调控;该吸波体对电磁波的吸收具有极化不敏感和宽角度吸收的特点。  相似文献   

7.
设计了基于集总电阻的超宽频带微波超材料吸波体,并通过仿真和实验进行了验证.依据等效媒质理论,通过S参数反演法计算了加载集总电阻的超材料吸波体结构等效电磁参数.结果表明:复合结构吸波体超宽频强吸收特性源于良好的阻抗匹配以及电谐振和磁谐振.此外,设计的复合超材料吸波体具有极化不敏感和宽角度吸收特性.最后,通过实验测试得到的复合超材料吸波体吸收率大于85%的相对带宽达到130.2%.设计的超宽频带吸波体将在电磁能量捕获和隐身领域具有广阔的应用前景.  相似文献   

8.
基于钛酸锶和电阻膜设计了一种多层结构的具有低频传感和高频宽带吸波功能的超材料吸波体.超材料吸波体在低频1.09 GHz处产生了一个可用于传感测量的吸收峰;在高频9.2~10.9 GHz之间产生了一个宽带吸收峰,带宽达1.7 GHz.通过对超材料吸波体吸收频率处的表面电流分布进行监控,阐述了低频和高频处的吸波机理.仿真计算结果证实,吸波体在低频和高频处的吸波特性是极化无关的,但是对入射角度是敏感的.超材料吸波体具有结构简单、功能多等优点,在传感测量、探测和电磁隐身等领域具有潜在的应用价值.  相似文献   

9.
文章设计了一种基于超材料的X波段双频吸波体,其结构单元由2个同心圆环的谐振结构、介质基板和金属基底组成。利用3D有限时域差分(finite difference time domain,FDTD)算法对吸波体的电磁波吸收特性进行数值模拟,该吸波体在X波段有8.842、11.86GHz 2个吸收频点,吸收率分别为98.86%、94.09%,基板的厚度是其中心频率工作波长的1/57。同时计算分析了不同极化角吸收率,结果表明该吸波体具有极化不敏感特性。对吸波体的结构参数(如基板厚度、介电常数和损耗角正切)对吸波性能的影响也进行了分析研究。  相似文献   

10.
对基于涡旋谐振环的AMC结构引入介质损耗,得到了一种“完美”吸波体,实现了单一频点2 GHz下较强的窄带吸波;然后加载集总参数元件拓展吸波体的频带宽度,在低频超宽带1.7 ~ 2.2 GHz范围实现了90%以上的吸收率,并对其吸波机理进行了分析;最后将宽带吸波体敷设到开缝腔体内壁上抑制腔体谐振,解决了屏蔽腔体的高谐振问题,开辟了超材料的一个新的应用领域。  相似文献   

11.
本文利用石墨烯的电光特性设计了一种可见光透明且振幅可调的超材料吸波体.首先通过商业软件CST Microwave Studio 2011模拟了石墨烯费米能级为0.5 eV时,介质层厚度对吸波体吸收特性的影响,仿真结果表明,介质层厚度从1.3 mm增加到1.6 mm,吸波体的中心频率从84 GHz红移到67 GHz,且吸收率几乎不变;其次模拟了介质层厚度为1.5 mm时,石墨烯费米能级对吸波体吸收特性的影响,仿真结果表明,通过改变电压来改变石墨烯的费米能级可以使吸波体实现振幅可调的功能,其调制深度可达47.9%左右,并且通过仿真证实了该吸波体还具有极化不敏感及入射角度不敏感的特性;最后对该吸波体表面电流分布及内部的空间电场进行仿真与分析,并阐述了其电磁吸波及振幅可调的机理.该超材料吸波体不仅具有超高的电磁波吸收率,并且具有可见光透明和振幅可调的功能,在隐身、探测和通信等领域具有潜在的应用价值.  相似文献   

12.
提出了一种复合型吸波频率选择表面(absorptive frequency selective surface, AFSS)结构,由超材料吸波体(metamaterial absorber , MA)和频率选择表面(frequency selective surface , FSS)组成. 复合型MA由加载电阻的平面型方环结构和立体型双面开口C型环结构组成,吸波频段为4.79~30.57 GHz,具有极化不敏感特性,在斜入射45°内保持稳定吸波. FSS采用了圆环缝隙旋绕结构,通过6次旋绕枝节实现了1.96~2.16 GHz频段内小于1 dB的插入损耗,形成低频通带. 二者组合形成的复合型AFSS,能在1.28~1.38 GHz频段内良好透波,4.88~30.58 GHz频段内宽带吸波,实现了吸透波一体的性能.   相似文献   

13.
介绍一种在两层磁性材料之间嵌入频率选择表面的薄层复合吸波结构的宽带吸收特性.频率选择表面由金属方环阵列和低耗介质板构成,其上层、下层磁性材料为不同电磁参数的羰基铁复合物.不加频率选择表面的传统磁性吸波材料若想在宽带取得良好的吸收效果,需要较大的厚度和面密度,导致其应用范围受限.引入频率选择表面能够增强复合吸波结构的吸收频带,并有效减薄吸波结构的厚度.在阻抗匹配条件下,电磁能量主要通过金属单元的欧姆损耗和底层磁性材料的磁损耗进行吸收.为了验证该复合吸波体的吸波性能,在电磁仿真软件HFSS 15.0上搭建模型,而后根据仿真结果对结构参数不断进行优化.最终的仿真结果表明,复合吸波材料厚度为2 mm,2 GHz处反射率可达-5.5 dB,在3.4 G~9 GHz频段反射率为-10 dB,在9 G~18 GHz频段反射率依旧达到-8 dB以下.而无频率选择表面的复合吸波材料,在同等条件下,虽然峰值吸收率较大,但在12 GHz以上吸波性能快速恶化,难以满足宽带吸波的要求.因此,含频率选择表面的复合吸波体具有吸收频带宽的优势,具有广泛的应用前景.  相似文献   

14.
实现宽带吸收是超材料吸波体研究面临的主要问题之一.基于此设计了鱼刺状宽带超材料吸波体,采用商业电磁仿真软件Microwave studio CST对超材料吸波体的吸收性能进行了计算和分析,结果表明设计的鱼刺状超材料吸波体可以在较宽的频率范围内实现电磁波的高吸收,在89.68~94.36GHz之间吸收率保持在90%以上.结构单元具有简单、较容易制备等优点.  相似文献   

15.
基于平行金属线的太赫兹准全向超材料吸波体   总被引:1,自引:0,他引:1  
该文基于平行金属线设计了一种具有准全向吸波特性的太赫兹超材料吸波体,其准全向吸波特性是通过提高超材料的结构对称性实现的.理论和仿真结果表明:随着超材料结构对称性的提高,超材料吸波体的极化敏感度逐渐降低直至达到任意极化吸波.仿真的不同入射角下的吸收率与表面电流分布表明:平行于介质基板的磁场分量在平行金属线之间激发的反向平行电流导致了结构的电磁谐振,因而在极宽的入射角下该超材料吸波体仍能对电磁波进行高效吸收.提取的等效阻抗实部表明:可以通过调节基板两侧金属线的尺寸,来实现吸收频率处超材料吸波体一侧与自由空间近似阻抗匹配,另一侧与自由空间阻抗不匹配,从而使得反射和传输同时最小、吸收最高.仿真的能量损耗分布表明:该吸波体的强吸收主要源于基板的介质损耗.该太赫兹吸波体可能在爆炸物探测和材料识别等领域具有广泛的应用.  相似文献   

16.
超表面在调控电磁波的极化、幅值和相位等方面具有极大的优势。针对天线带外低散射的现实需求,通过复合极化旋转超表面和频率选择表面,调节极化旋转单元的响应厚度,实现了兼具高效极化旋转反射和同极化透波窗口的超表面设计。利用几何相位仅对交叉极化波有响应的特性,进一步通过棋盘阵列排布,在透波窗口的两侧实现低散射特性,其中透波带10.0~11.0 GHz插损低于1 dB;在4.5~7.5 GHz和12.0~17.0 GHz频带内实现低散射特性,RCS缩减接近10 dB。仿真和实验结果表明:文中所提出的超表面设计方法和架构具有宽带的RCS缩减特性和低插损透波特性,在隐身天线罩中具有潜在的应用价值。  相似文献   

17.
为实现超材料吸波体吸收频率的智能调控,采用理论分析与模拟仿真相结合的方法,首先设计了一种双波段超材料吸波体,然后在双波段超材料吸波体中加入电流变液,通过改变电流变液外加电场的强度实现了双波段超材料吸波体吸收频率的智能调控。结果表明:双波段超材料吸波体在7.403 GHz和17.511 GHz处出现了两个吸收峰,吸收率分别为99.8%和70%;随着电流变液外加电场强度的增加,吸波体的吸收频率逐渐往低频发生移动,吸收频率调节率高达55%,由此提出了一种智能调控的双波段超材料吸波体。  相似文献   

18.
基于拓扑优化方法设计了一种轻质、宽带、大入射角的频率选择表面吸波体,并将其应用于微带天线以缩减雷达散射截面(Radar Cross Section,RCS)。吸波体在6.3~20GHz频段内的吸收率大于90%,并且在TE和TM两种极化下,当入射角增加至50°时仍保持在80%以上。将该吸波体以盖板形式加载到微带天线,在保证天线原有辐射特性不变的情况下,天线RCS的缩减在6.3~20GHz频带内大于3dBsm,在10.6~12GHz频带(天线工作频段:10.37~10.90GHz)内大于10dBsm。此外,由于选用泡沫材料作为基体,密度仅为0.35g/cm3,加载微带天线后增重很小。实验结果证明:与加载其他吸波材料的低散射截面微带天线相比,该微带天线不仅具有宽带RCS缩减特性,还具有重量小的优势。  相似文献   

19.
微波段多吸收带超材料吸波体设计及仿真研究   总被引:1,自引:1,他引:0  
王连胜 《科学技术与工程》2012,12(33):8998-9001,9025
基于开口电谐振环结构,设计了多吸收带超材料吸波体结构单元模型。模拟结果表明结构单元在5.205 GHz、10.628 GHz、17.559 GHz和24.896 GHz出现了4个吸收峰,吸收率最高为99.7%、最低为90%。当入射角度达到50度时,吸收率仍能保持在83%以上。在开口电谐振环级数增加的情况下,吸收峰的数目将会增加。这些优点使结构单元在频谱分析和多谱成像等领域表现出较大的潜力。  相似文献   

20.
对基于涡旋谐振环的人工磁导体(AMC)结构引入介质损耗,得到了一种"高吸波率"吸波体,实现了单一频点2 GHz下较强的窄带吸波;然后加载集总参数元件拓展吸波体的频带宽度,在低频超宽带1.7~2.2 GHz范围实现了90%以上的吸收率,并对其吸波机理进行了分析;最后将宽带吸波体敷设到开缝腔体内壁上抑制腔体谐振,解决了屏蔽腔体的高谐振问题,开辟了超材料的一个新的应用领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号