首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正以生物大分子为主的生命分子有携带、传递与转换信息的功能,此功能对生物体的物质与能量代谢起指导作用。本文旨在从生命化学角度讨论生命分子实现信息携带及转换的机制,信息论视角为深入认识生命分子提供了新洞见。  相似文献   

2.
长期以来,人们认为RNA只是遗传信息表达过程的中间环节,它主要担负着把遗传信息由DNA传递给蛋白质的使命。由1970年F.H.C.克里克修正的中心法则也可明显地看出在细胞的生命活动中两类生物大分子核酸和蛋白质的联系和分工:核酸的功能是储存和转移遗传信息,指导和控制蛋白质的合成;而蛋白质的主要功能是进行新陈代谢活动和作为细胞  相似文献   

3.
吴家睿 《科学》2005,57(2):29-30
根据分子生物学的“中心法则”(central dogma).遗传信息在几乎所有生物体内都是从DNA传递到RNA,然后再从RNA流向蛋白质。显然,RNA是一座“桥梁”,负责DNA和蛋白质之间信息的流通。在这个过程中,首先是将基因组DNA上的基因信息“复写”到一种称为mRNA的RNA分子上,然后再将mRNA含有的基因信息“翻译”为构成蛋白质的氨基酸序列。  相似文献   

4.
电子计算机的威力人所尽知,但涉及到与物理世界有关的复杂任务—比如某种昆虫的构成—还得寄望于对DNA的深入研究。曾于2000年获得“麦克阿瑟天才奖”的埃里克·温弗里(Erik Winfree),一直在潜心研究存储遗传生命信息的DNA;而人类的细胞正是利用这类遗传分子的信息来构建蛋白质,形成了我们的身体结构并做着与生命存在相关的几乎所有工作。目前,温弗里正在利用DNA独特的化学特性,旨在使其像计算机那样来处理信息(被称为DNA分子计算或DNA分子编程的新颖学科),甚至以DNA分子为“脚手架”构建起有用的结构。不久前,温弗里就其对生命起源的理解以及DNA的化学特性对未来可能产生的影响,接受了《发现》杂志资深编辑斯蒂芬·卡斯(Stephen Cass)的采访。  相似文献   

5.
电子计算机的威力人所尽知,但涉及到与物理世界有关的复杂任务--比如某种昆虫的构成--还得寄望于对DNA的深入研究.曾于2000年获得"麦克阿瑟天才奖"的埃里克·温弗里(Erik Winfree),一直在潜心研究存储遗传生命信息的DNA;而人类的细胞正是利用这类遗传分子的信息来构建蛋白质,形成了我们的身体结构并做着与生命存在相关的几乎所有工作.  相似文献   

6.
具有生命功能的孤立子   总被引:2,自引:0,他引:2  
在生物大分子的蛋白质和DNA中存在各种类型的孤立子。正是有了这些孤立子,蛋白质和DNA才能去完成它们的生物功能。  相似文献   

7.
吴家睿 《科学》2005,57(5):28-29
随着人类基因组计划和人类蛋白质组计划的实施,从科学家到普通民众,都对生物体中的生物大分子——核酸和蛋白质的重要性有了深刻认识。核酸和蛋白质是生命的物质基础和功能基础。然而,对生命体中的各种化学小分子也不应该忽略。首先,小分子是生物大分子的基本“砖块”,如DNA和RNA是由成千上万的碱基和核糖连接而成的,蛋白质则通常由几十到数百个氨基酸组成。  相似文献   

8.
杜沛  王奇慧 《科学通报》2023,(36):4943-4947
<正>在现代生命的中心法则中,RNA是遗传信息的传递者和重要的调控者.其中,信使RNA(messenger RNA,mRNA)作为中间分子,将DNA编码的信息传递到蛋白质序列,因而在发挥疫苗和药物功能时具备许多独特的优势.从1961年mRNA的发现到2020年新型冠状病毒感染全球大流行期间的mRNA疫苗接种,mRNA技术经历近60年的发展,最终进入了大规模的临床应用阶段.在这一过程的早期,科学家们陆续突破了mRNA的实验室合成、在细胞内表达蛋白质、递送进入动物  相似文献   

9.
最近,科学家斯图尔德在其著作《生命的其他秘密》中指出了生命是什么?它不是脱氧核糖核酸(DNA),不是我们所说的那种DNA.例如血红蛋白蛋白质分子,它的蛋白质分子的形状受许多遗传密码控制.此种形状的显现遵循深奥的物理学法则,而这些法则是通过数学式子表达出来的.人们讲的所谓DNA是  相似文献   

10.
在生物大分子的研究中,大分子整体结构对其反应活性的作用是一个基本问题。例如,对于核酸,人们自然会问:大分子的整体结构,如DNA,对它的不同位置,如嘌呤和嘧啶碱基等的性质究竟有怎么样的影响。近年来,已经可以用分子静电势这个概念对上述问题,至少是问题的某些重要方面,作出量子力学计算的解释。本文主要讨论分子静电势是如何影响各种亲电的、亲核的试剂跟DNA及其组分的相互作用的。  相似文献   

11.
生物系统的分子构建   总被引:9,自引:0,他引:9  
吴家睿 《科学》2003,55(3):27-28
人们曾经认为,生命是一个复杂系统,有许多特殊的运行规律.随着20世纪中叶分子生物学的诞生,科学家们提出,生命的行为可以还原到分子层次,可以通过单个生物大分子如基因或蛋白质的物理、化学性质来解释.  相似文献   

12.
过去在原子和小分子光谱中观察到过量子拍现象,而大分子因其结构复杂,量子拍现象往往被拓动运动所掩盖.观察大分子量子拍能够帮助我们获得分子吸收激光能量以及这部分能量在分子各能态间分布的信息.这些信息对于了解分子的光学性质及其他过程很有价值.  相似文献   

13.
生命的两大支柱蛋白质和核酸是生命的两大支柱。脱氧核糖核酸(DNA)以密码的形式记录着遗传信息,负责传种接代。然而它所记录的只是密码,就和电报纸上的数字密码一样,并不直接表达电报内容,读起来索然无味。DNA密码必须经过转录(分子遗传学借用转录一词,来表示由DNA密码转抄成核糖核酸(RNA)密码)和翻译(分子遗传学借用翻译一词,表示将RNA密码翻译成蛋白质)的过程,就如同把电码译成电文那样,才能把那份电报的内容表达出来。DNA链、RNA链上的密码子顺序和蛋白质多肽链上的氨基酸顺序严格对应。生物界种类繁多,千变万化。但生物的一切性状,  相似文献   

14.
《科学通报》2007,52(16):1977-1977
荷质协同传递是一类广泛存在的电荷迁移现象.特别是在复杂的生物环境中,表现出了许多迷人的协同迁移特征.它不仅参与一切正常的生理代谢过程,而且还与蛋白质、DNA等生物大分子的损伤以及病变机制密切相关,并且敏感地依赖于各类环境因素.因此阐明各类环境下质子电子迁移的协同性对认识相关的生命过程机制具有重要意义.目前,利用各种手段人们已经探明了诸多荷质协同转移特征,并被用于解释蛋白质氧化损伤、DNA电荷传导、转录与复制等过程.这类荷质协同转移原理对仿生功能材料及纳米分子器件的设计也具有很好的应用价值.另外,在各类有机体内,金属离子是很重要的一类组分,并且在调节活性中心的生物功能方面起着至关重要的作用.尤其,最近的研究发现金属或它们的配合物能够有效地调节电子转移的途径和速率.另一  相似文献   

15.
宋士华 《科学通报》1990,35(7):514-514
蛋白质生物大分子在电极上的电子转移过程是生物电化学领域的重要研究课题。电化学家认为以蛋白质-电极之间的电子转移过程模拟生物体中蛋白质-蛋白质之间的电子转移有可能提供某些解释生物体中电子传递机理的信息。细胞色素c(Cyt.c)是一种典型的传递电子的蛋白质,其辅基血红素铁为氧化还原活性中心。  相似文献   

16.
王存新 《科学通报》1990,35(14):1102-1102
分形是介于有序结构和完全无序结构之间的具有自相似的不规则状态。一条蛋白质分子链沿多方向折叠盘绕,虽然构象十分复杂,但仍然形成象α螺旋和β折叠有规则的结构。因此,研究生物大分子链的分形和分维,成了人们感兴趣的研究课题。Stapleton等人用低温下的EPR实验和计算机模拟,发现一些含铁蛋白质分子的分维在1.33—1.67之间。Isogai等人用计算大分子链长的方法,研究43个蛋白质的分维,结果在1.43—1.95之间。  相似文献   

17.
生命由三个要素构成。第一,生命同外界之间具有境界膜。生命存在于为这境界膜所隔离的微小环境下。现在的生物细胞膜组成以脂质和蛋白质为主。第二,生命具有自我复制能力,即具有产生的后代同自己相似的自我保存能力,这功能基于DNA携带的遗传信息。第三,生命具有自我维持功能,换句话说,就是能进行代谢活动。在现在的生物中,合成核酸和蛋白质的顺序是: DNA 转录 RNA 转译蛋白质这就是著名的中心法则。现有的生物都以这样的顺序从DNA生物合成(转录)RNA的,但最近有人认为在最初生命诞生时不用DNA、而是以RNA作为遗传信息体的。其根据有以下几个方面:1.各种RNA(如mRNA、rRNA、tRNA等)同蛋白质的生物合成关系密切,同DNA则无直接联系;2.DNA是RNA糖部分2’-OH的还原,就是说可以从RNA进行生物合成;3.DNA的生物合成过程中需要短链RNA引物;4.小病毒的遗传物质是RNA,大病毒是DNA;5.RNA病毒的逆转录酶也许是留有从RNA到DNA过渡期痕迹的化石;6.NAD和FAD那样的RNA诱导体作为辅酶参与酶作用;7.在前生物合成系统中,低聚核糖核苷酸比低聚脱氧核糖核苷酸更容易被合成;8.在RNA中有的具有酶作用,等等。  相似文献   

18.
1869年瑞士青年学者米歇尔(Johann F.Miescher.1844—1895年)在莱茵河鳟鱼的精子里发现了脱氧核糖核酸分子,即现在大家熟知的DNA。他虽然也曾猜想过DNA可能与遗传有关,但还是倾毕生精力去研究鱼精蛋白。毕竟蛋白质与生命过程的关系已经是当时科学研究的热门。以致1878年恩格斯在《反杜林论》中就写下了至今还基本正确的语句:“生命是蛋白质的存在方式,这种存在方式本质上就在于这些蛋白质的化学组成部分的不断的自我更新。”  相似文献   

19.
RNA是细胞以DNA为模板产生的转录产物,根据中心法则,早期一般将RNA整体地看作从DNA到功能蛋白质分子的中间信息专递分子.这些分子也是较早为生物学家所认知的mRNA,rRNA,tRNA等.其中mRNA直接作为翻译蛋白质的模板,而rRNA及tRNA等的功能则直接保证蛋白质翻译的进行.20世纪末及21世纪的研究逐渐让生物学家认识到细胞中还存在多种多样、对于中心法则遗传信息传递并非必需的非编码RNA分子.认识RNA分子的种类、功能、机理,及其与生理、遗传、进化等生命科学重要命题间的相互关系,是当代生物学的重要内容.本文对目前已知的非编码RNA种类、功能及机理,以及在生理、遗传、进化、生态中的作用进行概述.同时也简要介绍了非编码RNA相关的生物技术及生物医药应用.非编码RNA研究已经取得了巨大的进展,进一步的研究无疑将继续作为当代科学研究的重要领域存在,从而回答各种各样RNA在基因组功能中的作用这一问题.  相似文献   

20.
细胞是执行生命功能的基本单位,各种生物分子在脂膜包被的区域内有序协调地行使功能,从而构成了生物活动的基础.脂分子层不仅具有隔绝内外形成微环境的屏障作用,而且还通过受控的跨膜物质运输与信号转导而发挥交通枢纽的功能,实现了膜内外物质与信息交换的精细调节.除此之外,脂分子层由于其形成的疏水环境还为大量的脂溶性生物小分子的合成与代谢提供了加工场所.细胞内膜系统的物质运输是一个高度受控的复杂物流网络,所运输的底物涵盖了无机小分子、有机小分子和生物大分子等众多物质,其运输效率和调节机制与细胞发挥正常功能以及疾病发生发展具有重要关系.由于分子定位、原位成像和蛋白质样品获取方面的困难,目前对于细胞内膜运输系统的研究与了解只是冰山一角.本文就细胞内各膜系统间发生运输和交换的信号分子、营养物质及生物大分子的研究进展做了综述,并且期待在细胞内膜系统研究上新技术新方法的发现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号