首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用高温固相法合成Eu~(3+)掺杂的KGd (WO_4)_2系列红色发光材料. x射线衍射表明,1000℃高温焙烧下的KGd (WO_4)_2荧光粉为纯相晶体结构.样品可被近紫外光394 nm和蓝光465 nm有效吸收,发射出Eu~(3+)的特征光谱.研究了Eu~(3+)的掺杂量、保温时间及不同助熔剂对样品发光性能的影响,结果表明:KGd(WO_4)_2:Eu~(3+)是一种很有应用前景的白光LED用荧光材料.  相似文献   

2.
Sr_3Y_2(BO_3)_4:Eu~(3+)红色荧光粉在白光LED应用上有很大潜能,以高温固相法在1 000℃下焙烧5h可以制备出发光性能最佳的Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)红色荧光粉.通过X-ray衍射仪(XRD)和荧光光谱等测试手段对Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)荧光粉的制备条件、结构及发光性能进行表征.结果表明,适量掺杂Eu~(3+)并不能使Sr_3Y_2(BO_3)_4的结构发生改变.以394nm的近紫外光激发Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)荧光粉具有较好的发光性能,最强发射峰为Eu~(3+)离子的5D0→2F2电偶极跃迁,波长为618nm的红光.当Eu~(3+)离子的掺杂量为15%(mol)时,发光强度最大.  相似文献   

3.
采用熔盐法合成了NaCa_2Mg_2(VO_4)_3:Eu~(3+)白色荧光粉,通过X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和荧光光谱仪(FL)对样品的物相、形貌和发光性能进行了分析表征,结果表明:所得NaCa_2Mg_2(VO_4)_3:Eu~(3+)样品为纳米棒状,平均直径约为50nm,平均长度约为100nm;在279nm紫外光激发下,NaCa_(2-x)Mg_2(VO_4)_3:xEu~(3+)的发射光谱由一个宽带谱(400~580nm)和若干个尖锐特征峰组成,宽带峰属于VO_4~(3-)的~3T_2→~1A_1辐射跃迁,特征峰分别位于592 nm、612 nm、655 nm和710 nm处,属于Eu~(3+)的~5D_0→~7FJ跃迁,其中,对应于~5D_0→~7F_2跃迁的612nm发射峰强度最高。样品的最佳合成温度为600℃。当Eu~(3+)掺杂量为x=0.100时,NaCa_(1.9)Mg_2(VO_4)_3:0.1Eu~(3+)的色坐标(0.3242,0.3268)接近标准白光色坐标(0.333,0.333)。  相似文献   

4.
文章采用高温固相法在1000摄氏度弱还原气氛下制备了Eu~(2+)掺杂天然方柱石光致发光粉末。对天然方柱石的化学成分采用了电子探针能谱分析,采用X射线衍射(XRD)对所制备的样品进行结构表征分析,并观测了样品的发光性质。结果表明,掺杂Eu~(2+)的天然方柱石发出强烈的蓝色荧光,激发和发射光谱皆为宽带谱,发射谱峰值位于440 nm左右,对应于Eu~(2+)的4f~(65)d→4f~7跃迁,其余辉时间超过2分钟。最后通过对掺杂不同浓度Eu~(2+)样品发光性质的研究,认为最佳掺杂浓度为1.5 wt%。  相似文献   

5.
为了提高白光LED的显色指数,开发新型近紫外光激发的红色荧光粉,采用传统的高温固相法合成了一系列的(ASr)1.00-xPO_4:Eu_x~(3+)(A=Li,Na,K)红色荧光粉样品。XRD结果表明,样品分别含有LiSrPO_4(PDF#14-0202),NaSrPO_4(PDF#33-1282)和KSrPO_4(PDF#87-1854)的晶相。对比研究Li~+,Na~+和K~+对样品荧光发射光谱(PL)的离子增强效应可知,随着Eu~(3+)掺杂浓度的增加,Li~+和Na~+对样品R值(R=I2/I1,I2及I1分别为Eu~(3+)的~5D_0→~7F_2与~5D_0→~7F_1跃迁峰的强度)的增强效应也随之增强,而K~+则无此增强效应。3种碱金属离子中,Li~+的掺杂不仅使Eu~(3+)的发射光获得最大的强度,而且能够得到最大的R值(1.48)。3种类型荧光粉中Eu~(3+)的最佳掺杂浓度均为x=0.08,在最佳Eu~(3+)掺杂浓度下,样品(LiSr)0.92PO4:Eu_(0.08)~(3+)的色坐标为(0.63,0.37),其发射光最靠近纯红色,表明(LiSr)_(0.92)PO_4:Eu_(0.08)~(3+)荧光粉更适合作为近紫外—白光LED中的红光成分,具有巨大的应用价值。  相似文献   

6.
以Gd(NO_3)_3·6H_2O为金属离子源,KBF4为氟源,及Eu(NO_3)_3·6H_2O为掺杂离子源,通过简单的水热合成方法,合成出铜钱状GdF_3:Eu~(3+)纳米空心环.通过PXRD、SEM、TEM、EDX等表征方法对样品进行表征.结果表明:GdF_3:Eu~(3+)纳米空心环为六方晶相系,其直径约为500 nm.分别试验了反应时间、不同掺杂浓度对其形貌及发光性能的影响.结果表明:当掺杂摩尔浓度为15%时,荧光强度最强.同时研究了其磁学性能,结果表明GdF_3:Eu~(3+)是一种典型的顺磁材料.  相似文献   

7.
通过LSS(Liquid-Solid-Solution)方法制备了不同Eu~(3+)掺杂量的CaF_2纳米发光材料,利用X射线衍射仪(XRD)、透射电子显微镜(TEM)和光致发光光谱(PL)对制备样品的晶体结构、表面形貌、晶粒尺寸进行了表征,并进一步研究了Eu~(3+)掺杂量对样品发光性能的影响.结果表明:Eu~(3+)掺杂的CaF_2纳米材料具有良好的红光发光特性,Eu~(3+)最优掺杂量为15%,此时样品具有最大的发光强度;Eu~(3+)最大掺杂量为20%,样品的发光强度在这一掺杂量下反而减弱,这说明Eu~(3+)掺杂量的增加导致样品发生了浓度猝灭.  相似文献   

8.
以尿素为沉淀剂,稀土氯化物为原料,采用均相沉淀法制备Eu~(3+)掺杂的Gd_2O(CO_3)_2·H_2O纳米粒子,经过煅烧后得到Gd_2O_3:Eu~(3+)纳米荧光粉。利用扫描电镜(SEM)对纳米粒子的形貌和粒径进行表征,采用X-射线粉末衍射(XRD)、傅立叶红外光谱仪(FT-IR)等对纳米粒子的成分进行分析,研究了回流时间对纳米粒子的形貌和粒径的影响。结果表明:在回流结晶的过程中无定形的球形Gd_2O(CO_3)_2·H_2O纳米粒子逐步转化为菱形Gd_2O(CO_3)_2·H_2O纳米晶,煅烧后转化为立方相的Gd_2O_3:Eu~(3+),且在煅烧过程中它们的氧化物继承其碳酸盐前驱体的形貌。荧光测试表明,该菱形Gd_2O_3:Eu~(3+)纳米荧光粒子在253 nm紫外光激发下,其发射主峰位于611 nm,表现出强烈的红光。  相似文献   

9.
依据化学共沉积原理,在阳极氧化铝(AAO)纳米阵列孔模板中,用负压抽滤法可控合成了CeNd_xO_y:Eu~(3+)纳米管阵列结构材料.分别用SEM,TEM,XRD,SAED对其形貌、结构进行表征,并以EDS谱和荧光光谱仪(FL)测定该纳米管结构的元素组成和荧光性能.结果表明:CeNd_xO_y:Eu~(3+)纳米管阵列材料为非晶结构,其纳米管阵列形貌与AAO模板纳米孔阵列结构一致.在室温下,以450 nm波长光激发CeNd_xO_y:Eu~(3+)纳米管阵列,分别在516 nm和777 nm出现荧光发射峰,其荧光强度与Eu~(3+)掺杂量有关,当Eu~(3+)掺杂质量比为6%时,其荧光强度最强.  相似文献   

10.
采用高温固相法合成了Na_3Ce_(1-x)(PO_4)_2∶xDy~(3+)系列白色荧光粉。利用X射线粉末衍射、荧光光谱和荧光寿命技术对样品进行了表征。实验结果表明,在313 nm紫外光激发下,Na_3Ce(PO_4)_2:∶Dy~(3+)显示了3个发射带:363 nm的宽带发射可归属为Ce~(3+)离子的4f~05d~1→4f~1跃迁;483 nm和575 nm的2个窄带分别来自于Dy~(3+)的~4F_(9/2)→~6H_(15/2)和~4F_(9/2)→~6H_(13/2)跃迁。Na_3Ce_(1-x)(PO_4)_2∶xDy~(3+)(x=0.005~0.12)系列样品的发射峰形状并未随掺杂剂浓度的变化而改变。其强度在Dy~(3+)摩尔浓度等于0.01时达到最大值,进一步增加Dy~(3+)浓度将导致浓度猝灭现象发生。样品的荧光寿命随着Dy~(3+)掺杂浓度的增大而逐渐减小,表明Dy~(3+)离子之间存在能量传递现象。Na_3Ce(PO_4)_2∶Dy~(3+)荧光粉的色坐标为(0.342 9, 0.318 3),位于白光区域,是潜在的白光LED用荧光粉材料。  相似文献   

11.
应用激光光谱学及发光学的理论和方法研究了Tm3+/Ln3+(Ln3+=Yb3+,Er3+,Pr3+,Ho3+,Eu3+)离子在LaF3和LaOF纳米颗粒中的发光特性,探讨了获得蓝绿光发射的方式,分析了Tm3+离子的荧光发射对基质构成和共掺杂离子的依赖性质.研究结果表明,在氟化物纳米晶体中进行Tm3+和Ln3+(Ln3+=Ho3+,Pr3+,Er3+,Eu3+)的共掺杂,能有效地获得可见光发射,显著提高荧光量子产率,在太阳能光伏电池中具有很大的应用潜力.  相似文献   

12.
设G为有限群,o1(G)表示G中最高阶元素的阶.用极少的数量刻画有限单群是单群刻画领域中一个有趣的课题.本文只用群的阶及最高阶元素的阶刻画了单K3-群L3(3)和U3(3),即证明了:设G为有限群,M为单K3-群L3(3)和U3(3),则G≌M当且仅当|G|=|M|,且o1(G) =o1 (M).  相似文献   

13.
利用水热合成方法合成了LiBaF3∶Yb3 /Er3 (or Ho3 )(1%,1%)上转换荧光粉体,XRD分析表明所合成的样品为立方晶系结构.紫外-可见-近红外的漫反射吸收光谱表明,Er3 、Ho3 和Yb3 在1000 nm附近均有吸收.在980nm半导体激光激发下,LiBaF3∶Yb3 /Er3 (1%,1%)和LiBaF3∶Yb3 /Ho3 (1%,1%)都发射出较强的绿光和弱的红光,这些发射均为双光子过程.  相似文献   

14.
Ca(Mg_ 1/3 Nb_ 2/3 )O_3 and Ba(Zn_ 1/3 Nb_ 2/3 )O_3 ceramic cylinders with the same diameter were bonded by adhesive with low dielectric loss to yield the layered dielectric resonators, and the microwave dielectric characteristics were evaluated with TE_ 01δ mode. With increasing the Ba(Zn_ 1/3 Nb_ 2/3 )O_3 thickness fraction, the resonant frequency (f_0) decreased, while the effective dielectric constant (ε_ r,eff ) and temperature coefficient of resonant frequency (τ_f) increased. Good microwave dielectri...  相似文献   

15.
研究了Ho3+/Yb3+和Er3+/Yb3+共掺氟氧化物玻璃的上转换发光性质.结果表明,在980 nm近红外激光激发下,Ho3+/Yb3+和Er3+/Yb3+共掺样品都呈现了强烈的上转换红光和绿光发射.随着Ho3+和Er3+浓度的增加,红光和绿光的强度都先增大后减小,x≈0.1%时发光强度达到最大,而后逐渐减小,它们的最佳掺杂量分布在低浓度区域.上转换发光强度和激发光功率的关系表明上转换红光和绿光发射都是双光子的吸收过程.  相似文献   

16.
采用高温固相法制备单相Ba_3Gd(BO_3)_3:Ce~(3+),Tb~(3+)荧光粉,利用XRD、SEM、激光粒度仪和光致发光光谱分别对其物相、形貌、粒度分布和发光性能进行表征。结果表明:样品的粒度主要集中在1.5~2.0μm,颗粒表面光滑。激发光谱主要由Ce~(3+)和Tb~(3+)离子的4f-5d特征跃迁组成。在Ce~(3+)离子的特征激发下(350 nm),样品呈现Ce~(3+)离子的5d-4f宽带发射和Tb~(3+)离子的f-f锐利发射;主峰为544 nm,对应于Tb~(3+)离子的5D4→7F5跃迁。随着Tb~(3+)掺杂量的增加,Ce~(3+)离子的发射强度逐渐下降,Tb~(3+)离子的发射强度先增强后减弱;最佳掺杂量为20%。样品中存在Ce~(3+)向Tb~(3+)的能量传递,其传递效率为33.9%。样品的发光颜色可从蓝光调整到绿色区域。样品可应用于UV-LED中。  相似文献   

17.
本文介绍用两相滴定法测定在正辛烷中2-乙基己基膦酸单(2-乙基己基)酯(代号P_(507))萃取La~(3+)、Ce~(3+),Pr~(3+)、Nd~(3+)、Sm~(3+)的萃合物组成及相应的萃取反应常数K_M。  相似文献   

18.
设G为有限群,o1(G)表示G中最高阶元素的阶。用极少的数量刻画有限单群是单群刻画领域中一个有趣的课题。本文只用群的阶及最高阶元素的阶刻画了单K3-群L3(3)和U3(3),即证明了: 设G为有限群, M 为单K3-群L3(3)和U3(3),则GM当且仅当|G|=|M|,且o1(G)=o1(M)。
  相似文献   

19.
研究不同组成铈钆钐激活硼酸镁的发光光谱、激发光谱和发光寿命表明:在254nm紫外光激发下,只含Sm~(3+)的硼酸镁发光很弱;Ce~(3+)虽能很好地吸收紫外光,但只能将一部分能量传递给Sm~(3+);依靠Gd~(3+)的能量传递中间体作用,铈钆钐共激活的硼酸镁中Sm~(3+)的发光明显地增强。Ce~(3+)、Gd~(3+)和Sm~(3+)间能量传递的机理为共振传道。  相似文献   

20.
研究了在紫外光(UV)激发下,Bi~(3+)、Sm~(3+)单掺杂和共掺杂的GdBO_3的发射光谱、激发光谱及发光强度随组成变化的规律。发现在GdBO_3:Bi,Sm体系中,Bi~(3+)和Gd~(3+)对Sm~(3+)的发光均有敏化作用。Bi~(3+)的绝大部分能量是通过Bi~(3+)→Gd~(3+)→(Gd~(3+))_n→Sm~(3+)途径传递给Sm~(3+)的,Gd~(3+)在能量传递中起中间体作用。研究了Bi~(3+)→Sm~(3+)的能量传递机理为电偶极—电偶极相互作用的共振传递。根据406nm激发下GdBO_3:Sm体系中Sm~(3+)发光强度与浓度的关系,证明了Sm~(3+)自身浓度猝灭的机理也为电偶极—电偶极相互作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号