共查询到20条相似文献,搜索用时 62 毫秒
1.
用商业硝化细菌处理经厌氧酸化 -好氧生物膜法处理的焦化废水 ,结果表明 ,影响投菌法除氮效果的主要因素是碱度、反应时间以及氨氮 /菌种比m(NH3 —N) /m(M ) .在碱度充足的情况下 ,菌种的最佳作用时间为4 2h ,此时 ,m(NH3 —N) /m(M )与氨氮去除率之间呈现了很好的线性关系 ;当m(NH3 —N) /m(M )为 0 .5 1时 ,氨氮去除率可达 90 %以上 .另外 ,试验菌种可以同时进行硝化和反硝化反应 相似文献
2.
碳源和碳氮比对焦化废水反硝化工艺的影响 总被引:9,自引:0,他引:9
以上海焦化厂焦化废水为原水,采用软性纤维填料床缺氧反应工艺研究了碳源和碳氢比对焦化废水反硝化工艺的影响。结果表明,投加甲醇这一类易于生物降解的物质对焦化废水进行反硝化时,不仅较大地提高了焦化废水的反硝化速率,而且可使出水COD进一步降低。 相似文献
3.
采用聚乙烯醇(PVA)-硼酸包埋固定化法,包埋经筛选出的优势菌,制成固定化优势菌胶片.研究了不同条件下(温度、pH等)优势菌对COD的去除效果以及与未添加固定化优势菌的处理工艺进行比较,并对优势菌在最优环境下的生存状态进行了测定和观察. 相似文献
4.
好氧反硝化菌群的筛选及其培养条件的研究 总被引:3,自引:0,他引:3
从淮北焦化厂A2/O污水处理站二沉池的活性污泥中,采用焦化废水配制的牛肉膏蛋白胨固体培养基(DM100)分离纯化出7株反硝化细菌,并通过梯度添加焦化废水的平板驯化和液体驯化,在DO=2.5 mg/L的条件下复筛出4株具有抗逆性的优势好氧反硝化细菌,分别命名F4、F8、F9、F10.优势单菌株与组合菌群反硝化能力的对比试验表明,4株混合的好氧反硝化菌群生长快速稳定,在相同的试验条件下脱氮效率高于单菌株,48 h的NO3--N去除率为98.75%.4株混合菌群的最适生长条件为:35℃,pH=8.0,C/N比=5,接种量=25%(菌液浓度为(2~3)×107个/mL).经过筛选和条件优化,优势菌群NO3--N去除率达到90%的降解时间由96 h降到18 h. 相似文献
5.
通过用模拟的食品工业废水来培养8株异养硝化-好氧反硝化菌,以研究8株菌的生化及脱氮除磷性能,为提高食品工业废水处理效率提供理论基础.以琥珀酸钠为碳源、硫酸铵为氮源、磷酸氢二钾为磷源,将8株菌接种于实验室配制的模拟培养基,每隔24 h测定水中OD600、COD、NH3-N、TN和TP浓度.实验结果表明,8株菌生长情况良好并且均具有良好的生化能力和脱氮能力,在初始进水COD为2 310 mg/L、TN为87 mg/L的情况下,COD和TN的去除率最高分别可达到97.2%和89.2%,但除磷效果不明显.说明这8株菌能够在磷源低消耗的情况下,正常生长并表现出良好生化能力和脱氮能力,适合处理N/P较高的食品废水. 相似文献
6.
利用聚乙烯醇等通过包埋方式固定化反硝化菌,制备了一种微生物载体,对其生物传质性能进行了验证,碳酸氢钠溶液最适体积分数为0.6%.利用所制备微生物载体对金属表面处理废水进行脱氮处理,考察了处理过程中碳氮质量浓度比、载体填充率等因素对水中氨氮、硝态氮、亚硝态氮、总氮的影响,结果表明当碳氮质量浓度比为2.0,载体填充率为20%时,污水中氨氮质量浓度低于0.1 mg/L,硝态氮、亚硝态氮、总氮处理效率均高于95%.固定化反硝化菌为微生物水处理技术提供了更广阔的应用空间. 相似文献
7.
选用海藻酸钠(CA)和聚乙烯醇(PVA)混合物作为包埋载体,对经富集培养的以反硝化聚磷菌为主的活性污泥固定化制备方法进行了研究.利用正交实验考察了包埋菌体量、海藻酸钠质量分数、沸石添加量和交联时间对固定化菌除磷效果的影响,着重研究了包埋菌体量和沸石添加量这2个显著性影响因素对固定化小球性能的影响.研究表明,制备固定化反硝化聚磷菌的最佳包埋条件是:PVA质量分数为8%,CA质量分数为3%,包埋菌质量体积浓度为25g/L,沸石质量体积浓度为20 g/L,固定化小球交联时间为18 h. 相似文献
8.
高效反硝化菌强化固相碳源生物脱氮特性研究 总被引:1,自引:0,他引:1
以聚丁二酸丁二醇酯(PBS)作为固相可生物降解模式碳源的生物填充床,针对分离获得的高效反硝化菌开展强化生物脱氮的特性研究,并利用荧光定量PCR解析反应器的微生物群落结构。结果表明,投加反硝化菌(W14)可以明显地提高反硝化脱氮效率,当水力停留时间(HRT)为0.5 h时,反硝化菌强化脱氮生物反应器的脱氮效率达到90%以上,且能有效地降低出水残余的DOC浓度。荧光定量PCR结果表明,高效反硝化菌投加强化能够增加nir S基因丰度和比例,较好地解释了不同接种生物反应器的脱氮效果差异,即反硝化菌的强化作用能有效增加反硝化菌数量并强化脱氮效果。 相似文献
9.
10.
从活性污泥中驯化、筛选并分离出1株能有效去除氨氮的菌株LX 1-3,经过形态学与分子生物学鉴定该菌株为副球菌属(Paracouccus sp),NCBI Gen Bank登录号为MH156598.对该菌株进行反硝化性能测试,结果表明该菌培养的最适条件为30℃,最适p H值为7. 0~7. 3,48 h后脱氮率为30. 7%.将该菌与1株高耐盐季也蒙毕赤酵母(KX447139)搭配,脱氮效率有显著提高.在好氧条件下,按照好氧反硝化菌与高效耐盐菌1∶1的接菌量配比接入污水中,30℃反应48 h后,氨氮去除率为86. 36%.该研究为提高污水脱氮处理效率提供了有效的方法. 相似文献
11.
研究了将O-A-O处理工艺和活性炭H.S.B菌种生物处理法相结合的处理高浓度焦化废水的新工艺,该工艺利用该菌种中的好氧菌、厌氧菌在曝气和厌氧工艺阶段中发挥的不同作用使废水得到处理。结果表明,COD为7440mg/L的焦化废水经过6h的初次曝气SBR工艺处理后,废水的COD去除率可达到47%。24h的厌氧SBR工艺处理后废水的COD去除率为78%。最后经过32h的二次曝气SBR工艺处理后,最终出水的COD为492mg/L,总的去除率达到94%。该工艺具有运行成本低和COD去除率高的特点。 相似文献
12.
利用Box-BehnkenDesign(BBD)的响应面分析方法(RsM),对Fenton试剂法处理焦化废水4个主要因素:初始pH、H2O2用量、EH2O2]/[Fe^2+]摩尔比及反应时间的交互影响进行了分析,得到二次响应曲面模型,表明COD的去除率与各因素存在显著的相关性,以[Fe2+]:[H2O2。](摩尔比)和Hzoz投加量交互影响最为显著。以优化条件pH值为3.60、m(H2O2):re(CODcr)为1.95、[Fe2+]/EH2O2]摩尔比为1:7.43、反应时间30.8min,分别处理原水、缺氧池出水、二沉池出水,COD去除率达到44.60%、47.30%、56.59%.GC—MS分析Fenton氧化法处理前后水样,表明Fenton体系中产生大量的·OH自由基,主要对焦化废水中的挥发酚类和含氮杂环化合物类污染物苯环上的c—c键进行攻击后断裂,降解产物以石油烃类为主及部分的酯类、醇类等.好氧工艺和Fenton法对挥发酚类去除效果显著. 相似文献
13.
为了探明驯化方式对微生物燃料电池运行性能的影响,对比研究了两种不同的驯化方式。以焦化废水直接驯化和以乙酸钠、焦化废水梯度驯化下的微生物燃料电池对焦化废水的降解能力和产电能力。研究了MFC的产电性能以及COD的去除率。结果表明,MFC可以以焦化废水作为底物进行产电;并且直接驯化下的MFC的最大输出功率45.1 mW/m~2高于梯度驯化的42.9 mW/m~2;两种MFC的表观内阻差别不大,分别为直接驯化下814Ω、梯度驯化下811Ω。对COD的去除,直接驯化的MFC可以达到91%,梯度驯化也达到了83%,略低于直接驯化。由以上数据可以看出直接驯化的MFC优于梯度驯化的。 相似文献
14.
乙腈是一种脂肪族的急性剧毒有机污染物,不仅危害大而且来源广泛,众多行业产生的污水中都包含乙腈。为了找到一种适合的DSA阳极来高效率地降解乙腈,对四种不同材料的阳极电极(钌铱钛(Ti/TiO2-IrO2-RuO2)、钌铱钛锡(Ti/TiO2-IrO2-RuO2-SnO2)、铱钽钛(Ti/TiO2-Ta2O5-IrO2)和铱钽钛锡(Ti/TiO2-Ta2O5-IrO2-SnO2))分别降解乙腈模拟废水的产物进行了研究,通过国标法测定不同时间段降解产物的COD值,比较四种阳极电极对乙腈模拟废水降解效果的优劣,结果显示在降解2.5小时时涂层含有铱钽钛元素的电极对乙腈的降解效果最佳。并以此电极为代表优化降解乙腈模拟废水条件,得到最佳条件为:PH为6.60,浓度为每500ml水中含1.32ml乙腈,电压为4.10伏,在此条件下降解率可达到69.0367%。 相似文献
15.
为了提高银鱼的附加值,采用蛋白酶水解其蛋白制备银鱼多肽.以水解度为优化指标,确定酸性蛋白酶为最佳用酶,研究了温度、pH、料液比和加酶量对水解度的影响.用Design-Expert 8.0软件进行响应面最佳条件优化,确定最适水解条件为:41℃,pH 4.0,料液比1∶52,酶解时间6h和加酶量2.3%.优化后水解度达到15.13%,为银鱼的综合利用提供了一种新方法. 相似文献
16.
对筛选出的一株能产生表面活性剂的芽胞杆菌DF-10的发酵液进行薄板层析,表明所产表面活性剂的主要成分为糖脂.确定了菌株产生表面活性剂的最适发酵培养基组成和发酵条件,并对DF-10所产表面活性剂的表面活性、乳化性能、起泡性能及其抗硬水性进行了研究.结果表明,DF-10所产表面活性剂表面活性和起泡性好,并有较强的乳化能力和抗硬水能力. 相似文献
17.
以自制的洋葱伯克霍尔德菌固定化脂肪酶为催化剂,在微水相、无溶剂体系中研究了大豆油和甲醇合成生物柴油的工艺。在系统考察了酶用量、醇油比、含水量、反应温度、反应时间、甲醇流加方式等因素对甲酯得率影响的基础上,利用响应面试验设计优化了各主效因子,建立甲酯得率的二次回归方程,获得了最优的工艺条件:加酶量2.4%、加水量7.1%、反应温度40.4℃、反应时间10.7h、 醇油比4.5。在此条件下,实验测得甲酯得率为97.2%,与响应面模型预测值96.9%非常吻合,说明该优化方法有效、可靠。 相似文献
18.
为提高菌体产量,以益生菌枯草芽孢杆菌Asr作为发酵菌株,采用正交试验法和响应面法,对枯草芽孢杆菌Asr的发酵工艺进行了优化研究。结果表明,影响菌体产量最主要的3个因素为酵母浸粉、MgSO4和CaCl2;最佳发酵培养基配方为蔗糖20 g/L,蛋白胨10 g/L,酵母浸粉8.65 g/L,K2HPO4 3.0 g/L,MgSO4 0.27 g/L,CaCl2 0.53 g/L;最佳培养条件为温度37 ℃、初始pH值7.0、接种量10%、搅拌转速250 r/min;应用优化配方及工艺,枯草芽孢杆菌Asr的最高产量达到7.30×108 cfu/mL,菌体产量较优化前提高了3.95倍。研究结果可为后续菌体发酵罐的扩大培养提供技术支撑,对其他枯草芽孢杆菌发酵培养基的优化研究提供借鉴。 相似文献
19.
为提高酿酒酵母工程菌S288C-CYS3发酵产3-甲硫基丙醇的产率,采用响应面法对其发酵条件进行了研究.首先考察不同水平的温度、接种量、初始pH、转速以及时间对3-甲硫基丙醇产率的影响,在此基础上确定发酵温度、时间及起始pH值对3-甲硫基丙醇产率影响较为显著,然后利用Design Expert 8.05软件针对上述3个因素进行响应面优化实验并建立二次回归模型.最终确定的最佳参数为发酵温度31℃,起始pH为5,接种量10%,转速200 r/min,发酵时间64 h.此条件下3-甲硫基丙醇产量为0.69 g/L,较优化前提高了14.96%. 相似文献
20.
Butanol is a new kind of very potential biofuels.Enzymatic hydrolysis of corn stalk was utilized in this study to produce butanol by Clostridium acetobutylicum CICC 8008.Plackett-Burman (P-B) design and Central Composite Design (CCD) were adopted to screen crucial factors during fermentation as well as the optimization of experimental conditions.The result demonstrated that among the seven factors,namely,Yeast extract,(NH 4) 2 SO 4,KH 2 PO 4,MgSO 4,FeSO 4,CuSO 4 and CaCO 3,only CaCO 3 was selected as the most critical factor.The optimization experiment results for CaCO 3 usage,temperature and reaction time by CCD were determined to be 5.04 g/L,35°C and 70 h,respectively.A corresponding mathematical model was established to predict the fermentation experiment and maximum butanol yield of 6.57 g/L was acquired.The result of verification experiment under the optimum conditions showed that 6.20 g/L was the maximum butanol yield.This demonstrated that statistical method was a powerful tool for the optimization of butanol production from enzymatic hydrolysis of corn stalk. 相似文献