首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Meier-Gorlin syndrome (ear, patella and short-stature syndrome) is an autosomal recessive primordial dwarfism syndrome characterized by absent or hypoplastic patellae and markedly small ears1?3. Both pre- and post-natal growth are impaired in this disorder, and although microcephaly is often evident, intellect is usually normal in this syndrome. We report here that individuals with this disorder show marked locus heterogeneity, and we identify mutations in five separate genes: ORC1, ORC4, ORC6, CDT1 and CDC6. All of these genes encode components of the pre-replication complex, implicating defects in replication licensing as the cause of a genetic syndrome with distinct developmental abnormalities.  相似文献   

2.
Meier-Gorlin syndrome is a rare autosomal recessive genetic condition whose primary clinical hallmarks include small stature, small external ears and small or absent patellae. Using marker-assisted mapping in multiple families from a founder population and traditional coding exon sequencing of positional candidate genes, we identified three different mutations in the gene encoding ORC4, a component of the eukaryotic origin recognition complex, in five individuals with Meier-Gorlin syndrome. In two such individuals that were negative for mutations in ORC4, we found potential mutations in ORC1 and CDT1, two other genes involved in origin recognition. ORC4 is well conserved in eukaryotes, and the yeast equivalent of the human ORC4 missense mutation was shown to be pathogenic in functional assays of cell growth. This is the first report, to our knowledge, of a germline mutation in any gene of the origin recognition complex in a vertebrate organism.  相似文献   

3.
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.  相似文献   

4.
The mismatch repair system is required for S-phase checkpoint activation   总被引:18,自引:0,他引:18  
Defective S-phase checkpoint activation results in an inability to downregulate DNA replication following genotoxic insult such as exposure to ionizing radiation. This 'radioresistant DNA synthesis' (RDS) is a phenotypic hallmark of ataxia-telangiectasia, a cancer-prone disorder caused by mutations in ATM. The mismatch repair system principally corrects nucleotide mismatches that arise during replication. Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation. Cells deficient in mismatch repair proteins showed RDS, and restoration of mismatch repair function restored normal S-phase checkpoint function. Catalytic activation of ATM and ATM-mediated phosphorylation of the protein NBS1 (also called nibrin) occurred independently of mismatch repair. However, ATM-dependent phosphorylation and activation of the checkpoint kinase CHK2 and subsequent degradation of its downstream target, CDC25A, was abrogated in cells lacking mismatch repair. In vitro and in vivo approaches both show that MSH2 binds to CHK2 and that MLH1 associates with ATM. These findings indicate that the mismatch repair complex formed at the sites of DNA damage facilitates the phosphorylation of CHK2 by ATM, and that defects in this mechanism form the molecular basis for the RDS observed in cells deficient in mismatch repair.  相似文献   

5.
Familial idiopathic nephrotic syndromes represent a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. A causative gene for this disease, NPHS2, was mapped to 1q25-31 and we report here its identification by positional cloning. NPHS2 is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. We found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.  相似文献   

6.
Perlman syndrome is a congenital overgrowth syndrome inherited in an autosomal recessive manner that is associated with Wilms tumor susceptibility. We mapped a previously unknown susceptibility locus to 2q37.1 and identified germline mutations in DIS3L2, a homolog of the Schizosaccharomyces pombe dis3 gene, in individuals with Perlman syndrome. Yeast dis3 mutant strains have mitotic abnormalities. Yeast Dis3 and its human homologs, DIS3 and DIS3L1, have exoribonuclease activity and bind to the core RNA exosome complex. DIS3L2 has a different intracellular localization and lacks the PIN domain found in DIS3 and DIS3L1; nevertheless, we show that DIS3L2 has exonuclease activity. DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins. DIS3L2 overexpression suppressed the growth of human cancer cell lines, and knockdown enhanced the growth of these cells. We also detected evidence of DIS3L2 mutations in sporadic Wilms tumor. These observations suggest that DIS3L2 has a critical role in RNA metabolism and is essential for the regulation of cell growth and division.  相似文献   

7.
Mouse chromosome 10 harbors several loci associated with hearing loss, including waltzer (v), modifier-of deaf waddler (mdfw) and Age-related hearing loss (Ahl). The human region that is orthologous to the mouse 'waltzer' region is located at 10q21-q22 and contains the human deafness loci DFNB12 and USH1D). Numerous mutations at the waltzer locus have been documented causing erratic circling and hearing loss. Here we report the identification of a new gene mutated in v. The 10.5-kb Cdh23 cDNA encodes a very large, single-pass transmembrane protein, that we have called otocadherin. It has an extracellular domain that contains 27 repeats; these show significant homology to the cadherin ectodomain. In v(6J), a GT transversion creates a premature stop codon. In v(Alb), a CT exchange generates an ectopic donor splice site, effecting deletion of 119 nucleotides of exonic sequence. In v(2J), a GA transition abolishes the donor splice site, leading to aberrant splice forms. All three alleles are predicted to cause loss of function. We demonstrate Cdh23 expression in the neurosensory epithelium and show that during early hair-cell differentiation, stereocilia organization is disrupted in v(2J) homozygotes. Our data indicate that otocadherin is a critical component of hair bundle formation. Mutations in human CDH23 cause Usher syndrome type 1D and thus, establish waltzer as the mouse model for USH1D.  相似文献   

8.
Germline KRAS mutations cause Noonan syndrome   总被引:22,自引:0,他引:22  
Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause approximately 50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage-specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.  相似文献   

9.
Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.  相似文献   

10.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   

11.
Aberrant WNT pathway signaling is an early progression event in 90% of colorectal cancers. It occurs through mutations mainly of APC and less often of CTNNB1 (encoding beta-catenin) or AXIN2 (encoding axin-2, also known as conductin). These mutations allow ligand-independent WNT signaling that culminates in abnormal accumulation of free beta-catenin in the nucleus. We previously identified frequent promoter hypermethylation and gene silencing of the genes encoding secreted frizzled-related proteins (SFRPs) in colorectal cancer. SFRPs possess a domain similar to one in the WNT-receptor frizzled proteins and can inhibit WNT receptor binding to downregulate pathway signaling during development. Here we show that restoration of SFRP function in colorectal cancer cells attenuates WNT signaling even in the presence of downstream mutations. We also show that the epigenetic loss of SFRP function occurs early in colorectal cancer progression and may thus provide constitutive WNT signaling that is required to complement downstream mutations in the evolution of colorectal cancer.  相似文献   

12.
Intrauterine growth retardation is caused by maternal, fetal or placental factors that result in impaired endovascular trophoblast invasion and reduced placental perfusion. Although various causes of intrauterine growth retardation have been identified, most cases remain unexplained. Studying 29 families with 3-M syndrome (OMIM 273750), an autosomal recessive condition characterized by severe pre- and postnatal growth retardation, we first mapped the underlying gene to chromosome 6p21.1 and then identified 25 distinct mutations in the gene cullin 7 (CUL7). CUL7 assembles an E3 ubiquitin ligase complex containing Skp1, Fbx29 (also called Fbw8) and ROC1 and promotes ubiquitination. Using deletion analysis, we found that CUL7 uses its central region to interact with the Skp1-Fbx29 heterodimer. Functional studies indicated that the 3-M-associated CUL7 nonsense and missense mutations R1445X and H1464P, respectively, render CUL7 deficient in recruiting ROC1. These results suggest that impaired ubiquitination may have a role in the pathogenesis of intrauterine growth retardation in humans.  相似文献   

13.
Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.  相似文献   

14.
By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.  相似文献   

15.
Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.  相似文献   

16.
Dysregulation of the TSC-mTOR pathway in human disease   总被引:26,自引:0,他引:26  
The mammalian target of rapamycin (mTOR) has a central role in the regulation of cell growth. mTOR receives input from multiple signaling pathways, including growth factors and nutrients, to stimulate protein synthesis by phosphorylating key translation regulators such as ribosomal S6 kinase and eukaryote initiation factor 4E binding protein 1. High levels of dysregulated mTOR activity are associated with several hamartoma syndromes, including tuberous sclerosis complex, the PTEN-related hamartoma syndromes and Peutz-Jeghers syndrome. These disorders are all caused by mutations in tumor-suppressor genes that negatively regulate mTOR. Here we discuss the emerging evidence for a functional relationship between the mTOR signaling pathway and several genetic diseases, and we present evidence supporting a model in which dysregulation of mTOR may be a common molecular basis, not only for hamartoma syndromes, but also for other cellular hypertrophic disorders.  相似文献   

17.
Robinow syndrome is a short-limbed dwarfism characterized by abnormal morphogenesis of the face and external genitalia, and vertebral segmentation. The recessive form of Robinow syndrome (RRS; OMIM 268310), particularly frequent in Turkey, has a high incidence of abnormalities of the vertebral column such as hemivertebrae and rib fusions, which is not seen in the dominant form. Some patients have cardiac malformations or facial clefting. We have mapped a gene for RRS to 9q21-q23 in 11 families. Haplotype sharing was observed between three families from Turkey, which localized the gene to a 4. 9-cM interval. The gene ROR2, which encodes an orphan membrane-bound tyrosine kinase, maps to this region. Heterozygous (presumed gain of function) mutations in ROR2 were previously shown to cause dominant brachydactyly type B (BDB; ref. 7). In contrast, Ror2-/- mice have a short-limbed phenotype that is more reminiscent of the mesomelic shortening observed in RRS. We detected several homozygous ROR2 mutations in our cohort of RRS patients that are located upstream from those previously found in BDB. The ROR2 mutations present in RRS result in premature stop codons and predict nonfunctional proteins.  相似文献   

18.
17q11 microdeletions that encompass NF1 cause 5%-10% of cases of neurofibromatosis type 1, and individuals with microdeletions are typically taller than individuals with intragenic NF1 mutations, suggesting that deletion of a neighboring gene might promote human growth. We identified mutations in RNF135, which is within the NF1 microdeletion region, in six families characterized by overgrowth, learning disability, dysmorphic features and variable additional features. These data identify RNF135 as causative of a new overgrowth syndrome and demonstrate that RNF135 haploinsufficiency contributes to the phenotype of NF1 microdeletion cases.  相似文献   

19.
20.
Cornelia de Lange syndrome is a multisystem developmental disorder characterized by facial dysmorphisms, upper limb abnormalities, growth delay and cognitive retardation. Mutations in the NIPBL gene, a component of the cohesin complex, account for approximately half of the affected individuals. We report here that mutations in SMC1L1 (also known as SMC1), which encodes a different subunit of the cohesin complex, are responsible for CdLS in three male members of an affected family and in one sporadic case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号