首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intestinal mucosa integrates primary digestive functions with immune functions such as pathogen surveillance, antigen transport and induction of mucosal immunity and tolerance. Intestinal adaptive immunity is elicited in organized mucosa-associated lymphoid tissue (O-MALT) that is composed of antigen-presenting cells and lymphocytes and achieved by effector cells widely distributed in mucosa (diffuse MALT or D-MALT). Interaction between the intestinal epithelium, the O-MALT and the diffuse MALT plays a critical role in establishing an adequate immune response. In regions associated to O-MALT, lympho-epithelial cross-talks lead to acquisition of a specific epithelial phenotype that contributes to O-MALT organization and functionality. Beyond the expression of several innate immune functions, the intestinal epithelium may directly take up and present antigens due to the expression of major histocompatibility complex (MHC) and MHC-related molecules. A complex genetic program that will be outlined in the present review controls the development of immune functions of the intestinal epithelium. The effect of environmental signals on the modulation of this ontogenetic program during development and neonatal life, from bioactive components of amniotic fluid to lactation and bacterial colonization, will be discussed.  相似文献   

2.
The composition of the gut microbiota is in constant flow under the influence of factors such as the diet, ingested drugs, the intestinal mucosa, the immune system, and the microbiota itself. Natural variations in the gut microbiota can deteriorate to a state of dysbiosis when stress conditions rapidly decrease microbial diversity and promote the expansion of specific bacterial taxa. The mechanisms underlying intestinal dysbiosis often remain unclear given that combinations of natural variations and stress factors mediate cascades of destabilizing events. Oxidative stress, bacteriophages induction and the secretion of bacterial toxins can trigger rapid shifts among intestinal microbial groups thereby yielding dysbiosis. A multitude of diseases including inflammatory bowel diseases but also metabolic disorders such as obesity and diabetes type II are associated with intestinal dysbiosis. The characterization of the changes leading to intestinal dysbiosis and the identification of the microbial taxa contributing to pathological effects are essential prerequisites to better understand the impact of the microbiota on health and disease.  相似文献   

3.
Intestinal epithelial barrier and mucosal immunity   总被引:6,自引:0,他引:6  
The mucosal immune system maintains a delicate balance between providing robust defense against infectious pathogens and, at the same time, regulating responses toward innocuous environmental and food antigens and commensal microbes. The Peyer's patch (PP) has been studied in detail as a major inductive site for mucosal immunity within the small intestine. While the mechanisms responsible for the induction of mucosal immunity versus tolerance are not yet fully understood, recent studies have highlighted mucosal dendritic cells (DCs) as regulators of the immune responses to orally administered antigens. Here we discuss recent studies that describe the role of PP DCs in immune induction and speculate on the mechanism by which the resident DCs regulate T cell and immunoglobulin A (IgA) responses in the gastrointestinal mucosa.  相似文献   

4.
Monocytes and their pathophysiological role in Crohn’s disease   总被引:1,自引:1,他引:0  
Our immune system shows a stringent dichotomy, on the one hand displaying tolerance towards commensal bacteria, but on the other hand vigorously combating pathogens. Under normal conditions the balance between flora tolerance and active immunity is maintained via a plethora of dynamic feedback mechanisms. If, however, the balancing act goes faulty, an inappropriate immune reaction towards an otherwise harmless intestinal flora causes disease, Crohn’s disease for example. Recent developments in the immunology and genetics of mucosal diseases suggest that monocytes and their derivative cells play an important role in the pathophysiology of Crohn’s disease. In our review, we summarize the recent studies to discuss the dual function of monocytes - on the one hand the impaired monocyte function initiating Crohn’s disease, and on the other hand the overactivation of monocytes and adaptive immunity maintaining the disease. With a view to developing new therapies, both aspects of monocyte functions need to be taken into account. Received 1 June 2008; received after revision 24 July 2008; accepted 13 August 2008  相似文献   

5.
Infectious tolerance is a process whereby one regulatory lymphoid population confers suppressive capacity on another. Diverse immune responses are induced following infection or inflammatory insult that can protect the host, or potentially cause damage if not properly controlled. Thus, the process of infectious tolerance may be critical in vivo for exerting effective immune control and maintaining immune homeostasis by generating specialized regulatory sub-populations with distinct mechanistic capabilities. Foxp3(+) regulatory T cells (T(regs)) are a central mediator of infectious tolerance through their ability to convert conventional T cells into induced regulatory T cells (iT(regs)) directly by secretion of the suppressive cytokines TGF-β, IL-10, or IL-35, or indirectly via dendritic cells. In this review, we will discuss the mechanisms and cell populations that mediate and contribute to infectious tolerance, with a focus on the intestinal environment, where tolerance induction to foreign material is critical.  相似文献   

6.
The human intestinal mucosa is constantly exposed to commensal microbiota. Since the gut microbiota is beneficial to the host, hosts have evolved intestine-specific immune systems to co-exist with the microbiota. On the other hand, the intestinal microbiota actively regulates the host’s immune system, and recent studies have revealed that specific commensal bacterial species induce the accumulation of specific immune cell populations. For instance, segmented filamentous bacteria and Clostridium species belonging to clusters XIVa and IV induce the accumulation of Th17 cells in the small intestine and Foxp3+ regulatory T cells in the large intestine, respectively. The immune cells induced by the gut microbiota likely contribute to intestinal homeostasis and influence systemic immunity in the host.  相似文献   

7.
The colonization of the neonatal digestive tract provides a microbial stimulus required for an adequate maturation towards the physiological homeostasis of the host. This colonization, which is affected by several factors, begins with facultative anaerobes and continues with anaerobic genera. Accumulating evidence underlines the key role of the early neonatal period for this microbiota-induced maturation, being a key determinant factor for later health. Therefore, understanding the factors that determine the establishment of the microbiota in the infant is of critical importance. Exposure to antibiotics, either prenatally or postnatally, is common in early life mainly due to the use of intrapartum prophylaxis or to the administration of antibiotics in C-section deliveries. However, we are still far from understanding the impact of early antibiotics and their long-term effects. Increased risk of non-communicable diseases, such as allergies or obesity, has been observed in individuals exposed to antibiotics during early infancy. Moreover, the impact of antibiotics on the establishment of the infant gut resistome, and on the role of the microbiota as a reservoir of resistance genes, should be evaluated in the context of the problems associated with the increasing number of antibiotic resistant pathogenic strains. In this article, we review and discuss the above-mentioned issues with the aim of encouraging debate on the actions needed for understanding the impact of early life antibiotics upon human microbiota and health and for developing strategies aimed at minimizing this impact.  相似文献   

8.
Intestinal epithelial barrier and mucosal immunity   总被引:12,自引:0,他引:12  
The innate immune system plays a crucial role in maintaining the integrity of the intestine and protecting the host against a vast number of potential microbial pathogens from resident and transient gut microflora. Mucosal epithelial cells and Paneth cells produce a variety of antimicrobial peptides (defensins, cathelicidins, crytdinrelated sequence peptides, bactericidal/permeabilityincreasing protein, chemokine CCL20) and bacteriolytic enzymes (lysozyme, group IIA phospholipase A2) that protect mucosal surfaces and crypts containing intestinal stem cells against invading microbes. Many of the intestinal antimicrobial molecules have additional roles of attracting leukocytes, alarming the adaptive immune system or neutralizing proinflammatory bacterial molecules. Dysfunction of components of the innate immune system has recently been implicated in chronic inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, illustrating the pivotal role of innate immunity in maintaining the delicate balance between immune tolerance and immune response in the gut.  相似文献   

9.
Throughout the human life, the gut microbiota interacts with us in a number of different ways, thereby influencing our health status. The acquisition of such an interactive gut microbiota commences at birth. Medical and environmental factors including diet, antibiotic exposure and mode of delivery are major factors that shape the composition of the microbial communities in the infant gut. Among the most abundant members of the infant microbiota are species belonging to the Bifidobacterium genus, which are believed to confer beneficial effects upon their host. Bifidobacteria may be acquired directly from the mother by vertical transmission and their persistence in the infant gut is associated with their saccharolytic activity toward glycans that are abundant in the infant gut. Here, we discuss the establishment of the infant gut microbiota and the contribution of bifidobacteria to this early life microbial consortium.  相似文献   

10.
11.
Summary A discriminant analysis was performed on a set of maternal and neonatal variables to predict at birth the serum bilirubin levels during the neonatal period in infants incompatible with their mothers in the ABO system. The results suggest that the rational and simultaneous utilization of clinical and laboratory parameters allows, a few hours after delivery, a useful classification of these infants in low or high risk for hyperbilirubinemia.This work was supported by grants of NATO, Italian CNR and M.P.I.  相似文献   

12.
Summary The development and hormonal regulation of thioredoxin and of the thioredoxin-reductase system were investigated during the perinatal period in rat liver. An immunological procedure was developed in order to quantify thioredoxin in fetal and neonatal hepatocytes. Both immunoreactive thioredoxin and thioredoxin-reductase activity appeared on day 16.5 of pregnancy. The level of immunoreactive thioredoxin increased during the late fetal period, and its level was the same 24 h after birth. Moreover, its development was not subjected to hormonal regulation by corticosteroids and glucagon. In contrast, thioredoxin-reductase activity increased 3 times during the late fetal period and presented a marked increase 24 h after birth. In the absence of glucocorticoids there was no increase in the level of thioredoxin reductase, while administration of hydrocortisone acetate and glucagon to fetuses prematurely evoked its activity. This study suggests that if thioredoxin acts physiologically, this activity is related to the state of reduction of the molecule rather than to the total concentration in the liver.  相似文献   

13.
The development and hormonal regulation of thioredoxin and of the thioredoxin-reductase system were investigated during the perinatal period in rat liver. An immunological procedure was developed in order to quantify thioredoxin in fetal and neonatal hepatocytes. Both immunoreactive thioredoxin and thioredoxin-reductase activity appeared on day 16.5 of pregnancy. The level of immunoreactive thioredoxin increased during the late fetal period, and its level was the same 24 h after birth. Moreover, its development was not subjected to hormonal regulation by corticosteroids and glucagon. In contrast, thioredoxin-reductase activity increased 3 times during the late fetal period and presented a marked increase 24 h after birth. In the absence of glucocorticoids there was no increase in the level of thioredoxin reductase, while administration of hydrocortisone acetate and glucagon to fetuses prematurely evoked its activity. This study suggests that if thioredoxin acts physiologically, this activity is related to the state of reduction of the molecule rather than to the total concentration in the liver.  相似文献   

14.
Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells. Even though extensive scientific research has yielded important insights into the immune mechanisms involved in pancreatic β-cell destruction, little is known about the events that trigger the autoimmune process. Recent epidemiological and experimental data suggest that environmental factors are involved in this process. In this review, we discuss the role of viruses as an environmental factor on the development of type 1 diabetes, and the immune mechanisms by which they can trigger or protect against this pathology.  相似文献   

15.
We summarize the clinical presentation and molecular basis of a unique group of congenital immunodeficiency disorders in which defects in immune tolerance mechanisms result in severe autoimmunity. Patients with severe, familial forms of multi-organ autoimmunity have been recognized and clinically described for more than 40 years (Clin Exp Immunol 1: 119–128, 1966; Clin Exp Immunol 2: 19–30, 1967). Some are characterized primarily by autoimmunity and others by autoimmunity combined with susceptibility to specific infectious organisms. The first mechanistic understanding of these disorders began to emerge approximately 10 years ago with the initial identification of causative genes. As a result, our understanding of how immune tolerance is established and maintained in humans has expanded dramatically. Data generated over the last 3–4 years including identification of additional gene defects and functional characterization of each identified gene product in human and animal models have added clarity. This, in turn, has improved our ability to diagnose and effectively treat these severe, life-threatening disorders. Inherited disorders characterized by immune dysregulation have dramatically expanded our understanding of immune tolerance mechanisms in humans. Recognition and diagnosis of these disorders in the clinic allows timely initiation of life-saving therapies that may prevent death or irreversible damage to vital organs.  相似文献   

16.
Different death-styles have been described in unicellular organisms. In most cases they evolve with phenotypic features similar to apoptotic death of animal cells, such as phosphatidylserine (PS) exposure, oligonucleosomal DNA fragmentation, and loss of mitochondrial transmembrane potential, hinting that similar mechanisms operate in both situations. However, the biochemical pathways underlying death in unicellular organisms are still unclear. Host recognition of PS exposed on the surface of unicellular parasites is an important feature of the process of infection and progression of the disease. Here, we discuss data showing that entirely different mechanisms of PS exposure co-exist during the life-cycle of Leishmania amazonensis: in the case of promastigotes, a sub-population dies by apoptosis; in the case of amastigotes, the entire population exposes PS, not necessarily followed by apoptotic death. This phenomenon has been called apoptotic mimicry. The elusive caspase-like activities described in protozoa are also discussed.  相似文献   

17.
Establishing a celiac disease (CD) diagnosis can be difficult, such as when CD-specific antibody levels are just above cutoff or when small intestinal biopsies show low-grade injuries. To investigate the biological pathways involved in CD and select potential biomarkers to aid in CD diagnosis, RNA sequencing of duodenal biopsies from subjects with either confirmed Active CD (n?=?20) or without any signs of CD (n?=?20) was performed. Gene enrichment and pathway analysis highlighted contexts, such as immune response, microbial infection, phagocytosis, intestinal barrier function, metabolism, and transportation. Twenty-nine potential CD biomarkers were selected based on differential expression and biological context. The biomarkers were validated by real-time polymerase chain reaction of eight RNA sequencing study subjects, and further investigated using an independent study group (n?=?43) consisting of subjects not affected by CD, with a clear diagnosis of CD on either a gluten-containing or a gluten-free diet, or with low-grade intestinal injury. Selected biomarkers were able to classify subjects with clear CD/non-CD status, and a subset of the biomarkers (CXCL10, GBP5, IFI27, IFNG, and UBD) showed differential expression in biopsies from subjects with no or low-grade intestinal injury that received a CD diagnosis based on biopsies taken at a later time point. A large number of pathways are involved in CD pathogenesis, and gene expression is affected in CD mucosa already in low-grade intestinal injuries. RNA sequencing of low-grade intestinal injuries might discover pathways and biomarkers involved in early stages of CD pathogenesis.  相似文献   

18.
Cerebellar Purkinje cells (PC) physiologically reveal an age-dependent expression of progesterone with high endogenous concentrations during the neonatal period. Even if progesterone has been previously shown to induce spinogenesis, dendritogenesis and synaptogenesis in immature PC, data about the effects of progesterone on mature PC are missing, even though they could be of significant therapeutic interest. The current study demonstrates for the first time a progesterone effect, depending on the developmental age of PC. Comparable with the physiological course of the progesterone concentration, experimental treatment with progesterone for 24 h achieves the highest effects on the dendritic tree during the early neonate, inducing an highly significant increase in dendritic length, spine number and spine area, while spine density in mature PC could not be further stimulated by progesterone incubation. Observed progesterone effects are certainly mediated by classical progesterone receptors, as spine area and number were comparable to controls when progesterone incubation was combined with mifepristone (incubation for 24 h), an antagonist of progesterone receptors A and B (PR-A/PR-B). In contrast, an increase in the spine number and area of both immature and mature PC was detected when slice cultures were incubated with mifepristone for more than 72 h (mifepristone long-time incubation, MLTI). By including time-lapse microscopy, electron microscopic techniques, PCR, western blot, and MALDI IMS receptor analysis, as well as specific antagonists like trilostane and AG 205, we were able to detect the underlying mechanism of this diverging mifepristone effect. Thus, our results provide new insights into the function and signaling mechanisms of the recently described progesterone receptor membrane component 1 (PGRMC1) in PC. It is highly suitable that progesterone does not just induce effects by the well-known genomic mechanisms of the classical progesterone receptors but also acts through PGRMC1 mediated non-genomic mechanisms. Thus, our results provide first proofs for a previously discussed progesterone-dependent induction of neurosteroidogenesis in PC by interaction with PGRMC1. But while genomic progesterone effects mediated through classical PR-A and PR-B seem to be restricted to the neonatal period of PC, PGRMC1 also transmits signals by non-genomic mechanisms like regulation of the neurosteroidogenesis in mature PC. Thus, PGRMC1 might be an interesting target for future clinical studies and therapeutic interventions.  相似文献   

19.
Intestinal epithelial barrier and mucosal immunity   总被引:3,自引:0,他引:3  
Regulated mechanisms sustain the ability of the gut immune system to discriminate harmless food antigens (Ag) and commensal bacteria from pathogenic microorganisms, resulting in tolerance versus protective immunity, respectively. Antigens of the gut commensals are not simply ignored, but rather trigger an active immunosuppressive process, more commonly known as oral tolerance, which prevents the outcome of immunopathology. Both intrinsic properties of the gut microenvironment and cellular actors, as well as peripheral events induced by systemic dissemination of oral Ag, promote the induction of regulatory mechanisms that ensure maintenance of gut homeostasis. The aim of this review is to provide a synthetic update on the mechanisms of oral tolerance, with particular emphasis on the complex interplay between regulatory CD4+ T cells, dendritic cells and the gut microenvironment.  相似文献   

20.
Lysozymes are antibacterial effectors of the innate immune system in animals that hydrolyze peptidoglycan. Bacteria have evolved protective mechanisms that contribute to lysozyme tolerance such as the production of lysozyme inhibitors, but only inhibitors of chicken (c-) and invertebrate (i-) type lysozyme have been identified. We here report the discovery of a novel Escherichia coli inhibitor specific for goose (g-) type lysozymes, which we designate PliG (periplasmic lysozyme inhibitor of g-type lysozyme). Although it does not inhibit c- or i-type lysozymes, PliG shares a structural sequence motif with the previously described PliI and MliC/PliC lysozyme inhibitor families, suggesting a common ancestry and mode of action. Deletion of pliG increased the sensitivity of E. coli to g-type lysozyme. The existence of inhibitors against all major types of animal lysozyme and their contribution to lysozyme tolerance suggest that lysozyme inhibitors may play a role in bacterial interactions with animal hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号