首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell polarization is a fundamental process underpinning organismal development, and tissue homeostasis, which requires an orchestrated interplay of nuclear, cytoskeletal, and centrosomal structures. The underlying molecular mechanisms, however, still remain elusive. Here we report that kinesin-1/nesprin-2/SUN-domain macromolecular assemblies, spanning the entire nuclear envelope (NE), function in cell polarization by anchoring cytoskeletal structures to the nuclear lamina. Nesprin-2 forms complexes with the kinesin-1 motor protein apparatus by associating with and recruiting kinesin light chain1 (KLC1) to the outer nuclear membrane. Similar to nesprin-2, KLC1 requires lamin A/C for proper NE localization. The depletion of nesprin-2 or KLC1, or the uncoupling of nesprin-2/SUN-domain protein associations impairs cell polarization during wounding and dislodges the centrosome from the NE. In addition nesprin-2 loss has profound effects on KLC1 levels, the cytoskeleton, and Golgi apparatus organization. Collectively these data show that NE-associated proteins are pivotal determinants of cell architecture and polarization.  相似文献   

2.
Most of fundamental studies on protein folding have been performed with small globular proteins consisting of a single domain. In vitro many of these proteins are well characterized by a reversible two-state folding scheme. However, the majority of proteins in the cell belong to the class of larger multi-domain proteins that often unfold irreversibly under in vitro conditions. This makes folding studies difficult or even impossible. In spite of these problems for many multi-domain proteins, folding has been investigated by classical refolding. Co-translational folding of nascent polypeptide chains when synthesized by ribosomes has also been studied. Single molecule techniques represent a promising approach for future studies on the folding of multi-domain proteins, and tremendous advances have been made in these techniques in recent years. In particular, fluorescence-based methods can contribute significantly to an understanding of the fundamental principles of multi-domain protein folding. Received 3 December 2008; accepted 23 December 2008  相似文献   

3.
4.
5.
Nesprins-1/-2/-3/-4 are nuclear envelope proteins, which connect nuclei to the cytoskeleton. The largest nesprin-1/-2 isoforms (termed giant) tether F-actin through their N-terminal actin binding domain (ABD). Nesprin-3, however, lacks an ABD and associates instead to plectin, which binds intermediate filaments. Nesprins are integrated into the outer nuclear membrane via their C-terminal KASH-domain. Here, we show that nesprin-1/-2 ABDs physically and functionally interact with nesprin-3. Thus, both ends of nesprin-1/-2 giant are integrated at the nuclear surface: via the C-terminal KASH-domain and the N-terminal ABD-nesprin-3 association. Interestingly, nesprin-2 ABD or KASH-domain overexpression leads to increased nuclear areas. Conversely, nesprin-2 mini (contains the ABD and KASH-domain but lacks the massive nesprin-2 giant rod segment) expression yields smaller nuclei. Nuclear shrinkage is further enhanced upon nesprin-3 co-expression or microfilament depolymerization. Our findings suggest that multivariate intermolecular nesprin interactions with the cytoskeleton form a lattice-like filamentous network covering the outer nuclear membrane, which determines nuclear size.  相似文献   

6.
In this study, a proteomic approach that combines selective labelling of proteins containing reduced cysteine residues with two-dimensional electrophoresis/mass spectrometry was used to evaluate the redox state of protein cysteines during chronological ageing in Saccharomyces cerevisiae. The procedure was developed on the grounds that biotinconjugated iodoacetamide (BIAM) specifically reacts with reduced cysteine residues. BIAM-labelled proteins can then be selectively isolated by streptavidin affinity capture. We compared cells grown on 2% glucose in the exponential phase and during chronological ageing and we found that many proteins undergo cysteine oxidation. The target proteins include enzymes involved in glucose metabolism. Both caloric restriction and growth on glycerol resulted in a decrease in the oxidative modification. Furthermore, in these conditions a reduced production of ROS and a more negative glutathione half cell redox potential were observed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 15 September 2008; received after revision 17 December 2008; accepted 06 January 2009  相似文献   

7.
Eukaryotic genomes have complex spatial organization in the nucleus. The factors and the mechanisms involved in this organization remain an enigma. Among the many proteins implicated in such a role, the ubiquitous Zn-finger protein CTCF stands out. Here we summarize the evidence placing CTCF in the enviable position of a master organizer of the genome. CTCF can form loops in cis, and can bridge sequences located on different chromosomes in trans. The thousands of CTCF binding sites, identified in recent genome-wide localization studies, and their distribution along the genome further support a crucial role of CTCF as a chromatin organizer. Received 10 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   

8.
Symmetric DNA sequence motifs allow the formation of palindromic protein/DNA complexes. Although symmetric protein sequence motifs are less common, recent structural discoveries have unraveled a few protein/protein complexes with palindromic symmetry. Remarkably, symmetric protein/protein complexes can be generated either by adjacent or remote sequence motifs, which may be repeated or inverted. This contribution reflects and comments on recent findings of palindromic protein/protein complexes. Received 14 May 2008; received after revision 21 June 2008; accepted 14 July 2008  相似文献   

9.
Diverse molecular functions of Hu proteins   总被引:1,自引:1,他引:0  
  相似文献   

10.
The BAG (Bcl-2 associated athanogene) family is a multifunctional group of proteins that perform diverse functions ranging from apoptosis to tumorigenesis. An evolutionarily conserved group, these proteins are distinguished by a common conserved region known as the BAG domain. BAG genes have been found in yeasts, plants, and animals, and are believed to function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in carcinogenesis, HIV infection, and Parkinson’s disease. These proteins are therefore potential therapeutic targets, and their expression in cells may serve as a predictive tool for such diseases. In plants, the Arabidopsis thaliana genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. Three members contain a calmodulin-binding domain possibly reflecting differences between plant and animal programmed cell death. This review summarizes current understanding of BAG proteins in both animals and plants. Received 21 November 2007; received after revision 17 December 2007; accepted 2 January 2008  相似文献   

11.
Inhibiting the production of amyloid-β by antagonising γ-secretase activity is currently being pursued as a therapeutic strategy for Alzheimer’s disease (AD). However, early pre-clinical studies have demonstrated that disruption of presenilin-dependent γ-secretase alters many presenilin-dependent processes, leading to early lethality in several AD model organisms. Subsequently, transgenic animal studies have highlighted several gross developmental side effects arising from presenilin deficiency. Partial knockdown or tissue-specific knockout of presenilins has identified the skin, vascular and immune systems as very sensitive to loss of presenilin functions. A more appreciative understanding of presenilin biology is therefore demanded if γ-secretase is to be pursued as a therapeutic target. Herein we review the current understanding of γ-secretase complexes; their regulation, abundance of interacting partners and diversity of substrates. We also discuss regulation of the γ-secretase complexes, with an emphasis on the functional role of presenilins in cell biology. Received 25 July 2008; received after revision 24 November 2008; accepted 10 December 2008  相似文献   

12.
hShroom1 (hShrm1) is a member of the Apx/Shroom (Shrm) protein family and was identified from a yeast two-hybrid screen as a protein that interacts with the cytoplasmic domain of melanoma cell adhesion molecule (MCAM). The characteristic signature of the Shrm family is the presence of a unique domain, ASD2 (Apx/Shroom domain 2). mRNA analysis suggests that hShrm1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, placenta and lung tissue, as well a variety of melanoma and other cell lines. Co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments indicate that hShrm1 and MCAM interact in vivo and by immunofluorescence microscopy some co-localization of these proteins is observed. hShrm1 partly co-localises with β-actin and is found in the Triton X-100 insoluble fraction of melanoma cell extracts. We propose that hShrm1 is involved in linking MCAM to the cytoskeleton. D. E. Dye, S. Karlen: These authors contributed equally to this work. Received 09 October 2008; received after revision 23 November 2008; accepted 09 December 2008  相似文献   

13.
Functions and pathologies of BiP and its interaction partners   总被引:1,自引:1,他引:0  
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   

14.
The three isoforms of the adaptor protein Shc play diverse roles in cell signalling. For example, the observation of p46 Shc in the nuclei of hepatocellular carcinoma cells suggests a function quite distinct from the better characterised cytoplasmic role. Ligands responsible for the transport of various Shc isoforms into organelles such as the nucleus have yet to be reported. To identify such ligands a far western approach was used to determine the p52 Shc interactome. The Ran-GTPase nuclear transport protein was identified and found to bind to p52 Shc in vitro with low micromolar affinity. Co-immunoprecipitation, pull down and fluorescence lifetime imaging microscopy experiments in stable cells confirmed cellular interaction and nuclear localisation. The nuclear transport factor protein NTF2, which functions in cohort with Ran, was shown to form a complex with both RAN and Shc, suggesting a mechanism for Shc entry into the nucleus as part of a tertiary complex. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 20 October 2008; received after revision 04 December 2008; accepted 15 December 2008  相似文献   

15.
The acrosome reaction has long been thought to be induced by the zona pellucida. Here we report the identification and function of a novel human sperm glycosylphosphatidylinositol (GPI)-anchored membrane protein, NYD-SP8. The release of the protein during sperm-egg interaction and its binding to the cumulus, the first layer of egg investment, elicits cross-talk between the gametes and produces calcium dependant release of progesterone, which lead to the acrosome reaction. An in vivo mouse model of NYD-SP8 immunization is also established showing a reduced fertility rate. Thus, contrary to accepted dogma, our study demonstrates for the first time that, prior to reaching the zona pellucida, sperm may release a surface protein that acts on the cumulus cells leading to the acrosome reaction, which may be important for determining the outcome of fertilization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 11 August 2008; received after revision 18 December 2008; accepted 22 December 2008  相似文献   

16.
Improper protein folding (misfolding) can lead to the formation of disordered (amorphous) or ordered (amyloid fibril) aggregates. The major lens protein, α-crystallin, is a member of the small heat-shock protein (sHsp) family of intracellular molecular chaperone proteins that prevent protein aggregation. Whilst the chaperone activity of sHsps against amorphously aggregating proteins has been well studied, its action against fibril-forming proteins has received less attention despite the presence of sHsps in deposits found in fibril-associated diseases (e.g. Alzheimer’s and Parkinson’s). In this review, the literature on the interaction of αB-crystallin and other sHsps with fibril-forming proteins is summarized. In particular, the ability of sHsps to prevent fibril formation, their mechanisms of action and the possible in vivo consequences of such associations are discussed. Finally, the fibril-forming propensity of the crystallin proteins and its implications for cataract formation are described along with the potential use of fibrillar crystallin proteins as bionanomaterials. Received 13 June 2008; received after revision 29 July 2008; accepted 05 August 2008  相似文献   

17.
18.
Progress in understanding the neuronal SNARE function and its regulation   总被引:1,自引:0,他引:1  
Vesicle budding and fusion underlies many essential biochemical deliveries in eukaryotic cells, and its core fusion machinery is thought to be built on one protein family named soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE). Recent technical advances based on site-directed fluorescence labelling and nano-scale detection down to the single-molecule level rapidly unveiled the protein and the lipid intermediates along the fusion pathway as well as the molecular actions of fusion effectors. Here we summarize these new exciting findings in context with a new mechanistic model that reconciles two existing fusion models: the proteinaceous pore model and the hemifusion model. Further, we attempt to locate the points of action for the fusion effectors along the fusion pathway and to delineate the energetic interplay between the SNARE complexes and the fusion effectors. Received 01 July 2008; received after revision 29 August 2008; accepted 23 September 2008  相似文献   

19.
A dynamic view of peptides and proteins in membranes   总被引:1,自引:0,他引:1  
Biological membranes are highly dynamic supramolecular arrangements of lipids and proteins, which fulfill key cellular functions. Relatively few high-resolution membrane protein structures are known to date, although during recent years the structural databases have expanded at an accelerated pace. In some instances the structures of reaction intermediates provide a stroboscopic view on the conformational changes involved in protein function. Other biophysical approaches add dynamic aspects and allow one to investigate the interactions with the lipid bilayers. Membrane-active peptides fulfill many important functions in nature as they act as antimicrobials, channels, transporters or hormones, and their studies have much increased our understanding of polypeptide-membrane interactions. Interestingly several proteins have been identified that interact with the membrane as loose arrays of domains. Such conformations easily escape classical high-resolution structural analysis and the lessons learned from peptides may therefore be instructive for our understanding of the functioning of such membrane proteins. Received 11 March 2008; received after revision 2 May 2008; accepted 5 May 2008  相似文献   

20.
Cutaneous wound healing is a complex and highly coordinated process where a number of different cell types participate to renew the damaged tissue under the strict regulation of soluble and insoluble factors. One of the most versatile processes involved in wound repair is proteolysis. During cell migration, proteins of extracellular matrix are cleaved, often creating biologically active cleavage products, and proteolysis of cellular contacts leads to increased cell motility and division. Moreover, proteases activate various growth factors and other proteases in wound and regulate growth factor signaling by shedding growth factor receptors on cell surface. Normally, proteolysis is strictly controlled, and changes in protease activity are associated with alterations in wound closure and scar formation. Here, we present the current view on the role of metalloproteinases and the plasmin-plasminogen system in normal and aberrant cutaneous wound repair and discuss their role as potential therapeutic targets for chronic ulcers or fibrotic scars. Received 07 July 2008; received after revision 11 August 2008; accepted 13 August 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号