首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
目的研究放坡-桩锚支护结构变形的演化规律及力学性能.方法以沈阳地区某深基坑为例,分析放坡-桩锚支护结构变形和锚杆轴力的分布情况,采用FLAC3D软件对深基坑放坡-桩锚联合支护结构进行数值模拟,并对现场监测结果进行分析.结果土体摩尔-库伦模型可以很好地描述土体的力学特征.结论基坑四边的中点处发生水平位移最大,角点处最小;支护桩桩顶水平位移最大;地表最大沉降发生在坡顶开挖边线的位置,且水平影响范围在距基坑边缘处15 m.锚杆内力在锚杆的自由段不变,在锚固段随锚固段的增长而变小.  相似文献   

2.
为研究高水位红砂岩地层基坑降水开挖引起的变形规律,以兰州东方红广场地铁车站深基坑工程为背景,对基坑降水开挖过程中桩体水平位移以及坑周地表沉降进行现场监测.采用有限差分软件Flac3D对基坑降水开挖过程中的位移进行模拟计算.监测结果表明:随着基坑开挖深度的增加,桩体最大水平位移的位置逐渐下移,最终靠近基坑底部,大约在坑底以上1~2 m;地表最大沉降值出现在距离基坑边5~7 m处,大约0.29~0.41倍的基坑开挖深度;桩间水土流失是造成地表沉降过大的主要原因.模拟结果与实测结果对比分析得出:地表沉降模拟值与监测值变化趋势基本一致;桩体在距地面小于12 m部分其水平位移模拟值与实测值非常接近,大于12 m部分实测值明显大于模拟值.  相似文献   

3.
地铁的修建尤其是车站的施工和盾构的始发过站等都涉及深基坑的开挖,需要通过监测关注开挖过程中的基坑变形.以佛山地铁二号线湾华站深基坑为工程实例,对围护结构和坑外地表的监测数据进行了整理分析.结果表明,围护桩在开挖过程中表现出内凸型的变形模式,最大水平位移发生在0. 7倍至0. 8倍开挖深度处.坑外地表沉降呈现出凹槽形,最大地表沉降发生在距坑边3 m处.根据实测和理论分析,该基坑开挖的影响范围为2倍开挖深度.  相似文献   

4.
结合某地铁车站基坑开挖工程,基于基坑支护结构的现场实测数据,对排桩内支撑基坑支护体系桩顶水平位移,桩体侧向位移及基坑周边土体沉降量进行分析,得出基坑围护结构各项位移和周边土体沉降随时间及开挖深度的变化规律.建立研究区二维有限元模型,并将实测数据与模拟值进行对比,研究支护结构内力变化及桩后土体应力状态.研究结果表明:基坑长边桩顶水平位移约为短边桩顶水平位移的3倍,桩体最大侧向变形量位于1/2H(H为基坑开挖深度)处;基坑开挖及降水引起地面沉降范围约3H,基坑周边各监测断面最大沉降量出现在距基坑边22m处(约0.82H~0.96H),内支撑架设有助于增大基坑整体稳定性.  相似文献   

5.
运用非线性有限元软件ADINA,建立了一个深基坑土钉支护结构整体三维有限元模型.研究了土钉的轴力、开挖面水平位移、坑后地面沉降、坑底隆起.结果表明:在纯土钉支护结构中,中部土钉受力最大,最大开挖面水平位移出现在开挖面顶部,坑后地表沉降曲线呈"勺子"形状,最大沉降值处距基坑边的距离约为1倍的开挖深度.  相似文献   

6.
支护结构严重影响深基坑开挖变形,已有研究缺乏对支护结构进行整体协同优化.本文利用MIDAS GTS NX有限元软件进行支护结构多参数对基坑开挖变形影响机理分析.研究了锚杆入射角、围护桩厚度和深度等结构参数对坑外土沉降和围护桩水平位移的影响机理,并对支护结构参数进行优化设计.结果表明:锚杆入射角对基坑隆起影响不大,对坑外土沉降有一定的影响,对围护桩水平位移影响较大;围护桩厚度、深度对坑外土沉降、围护桩水平位移都有影响.通过参数组合计算发现锚杆最优入射角为25°左右,同时改变围护桩的深度和厚度,在保证桩侧向位移不增加条件下,桩总体积可以减小20%,由此得到实际工程深基坑支护结构的最优方案,并通过现场监测数据进行了验证.研究结果为深基坑支护结构优化设计和变形验算提供技术支撑和应用参考.  相似文献   

7.
湿陷性黄土地区地铁深基坑支护设计   总被引:4,自引:0,他引:4  
以西安地铁小寨站深基坑支护工程为例,对其所在区域的湿陷性黄土地质条件、周边环境进行了具体的分析,采用旋喷桩、钻孔灌注桩和钢支撑等支护方案进行基坑支护,充分发挥各自的优点.支护方案实施后,在现场监测基坑地表水平位移和地表沉降,基坑稳定后得到基坑地表水平位移最大值仅为6.4 mm,地表沉降也没有超过设计值.实测结果表明基坑支护方案设计合理,基坑边坡变形得到了有效控制,各支护单元的受力性能发挥正常,确保了施工安全,取得了良好的经济效益和社会效益.图6,表3,参7.  相似文献   

8.
以海口市某砂与淤泥互层地基深基坑工程为背景,通过对其施工期间动态监测数据的分析,总结了该深基坑工程的支护结构变形、周边地表沉降变形及水位变化等特征.分析结果表明:支护结构变形主要发生在基坑开挖阶段,最大水平位移位于长边中心处;基坑开挖的影响范围主要集中于0~2 H处(H为基坑开挖深度),最大可延伸至距基坑边缘约为3 H处,产生最大沉降量位置约为支护结构后0.7~0.9 H处;基坑开挖引起的周边水位变化较小,10月份水位变化波动较大,11月后水位比较稳定.  相似文献   

9.
水泥土预应力支护桩墙工法(HCMW工法)是在SMW工法的基础上发展起来的基坑支护新方法,该方法具有抗弯能力好、止水性强、对周围土体扰动小等优点。结合工程实际,从工况力学分析、地表沉降量、抗倾覆稳定性验算、整体稳定性验算、抗隆起稳定性验算等角度对HCMW工法的支护规律和效果进行研究,结果表明:支护结构的水平位移在加撑前后有较明显的变化,从地表到坑底呈现逐渐减小的趋势,由于开挖时土体卸载,导致侧支护土体的压力减小,在开挖范围内向基坑移动导致基坑下部土体位移减小,一般出现在距坑底0~2m的范围;基坑周围整体沉降量和距坑边距离呈抛物线状,基坑的最大沉降量为18mm,发生在距离坑边5.6m的位置;最后,对基坑抗倾覆稳定性、整体稳定性和抗隆起稳定性进行验算,得到其稳定安全系数分别为1.974、1.386和2.793,均大于规范规定的安全系数,满足安全要求,表明HCMW工法具有较好的支护效果。  相似文献   

10.
利用FLAC3D数值模拟软件,按照实际施工工序模拟基坑开挖支护全过程,得到了桩锚支护结构以及基坑外土体沉降和基坑侧壁水平位移随基坑开挖的变形规律:随基坑开挖深度的增加,基坑外土体沉降逐渐增大,变化曲线呈"勺状"分布;基坑顶和基坑侧壁水平位移随开挖深度增加均逐渐增大且都在开挖至基坑底时位移最大;桩身弯矩最大值处基本出现在基坑开挖深度1.5 m以上的位置,最大负弯矩值为76.7;锚索轴力最大位置出现在锚索的端头处,且从端头位置向端尾位置逐渐减小,而第1排至第3排锚索最大值逐渐增大,说明支护结构中第2、3排锚索起主要作用,验证了深基坑桩锚支护的可行性。  相似文献   

11.
针对既有深基坑坑外通常存在临时堆载的情况,依托某建筑物地下室深基坑工程,运用ABAQUS有限元数值建模并结合实测数据,分析了坑外偏压荷载大小、荷载位置及荷载分布宽度对既有深基坑支护结构受力和变形的影响。研究结果表明:坑外偏压荷载大小不同情况下基坑两侧支护结构水平位移和弯矩差异较大,左侧(有荷载侧)桩体的水平位移大于右侧(无荷载侧),并且右侧桩体会发生逆向位移;左侧桩体最大弯矩随着荷载的增大而增加,右侧桩体最大弯矩呈减小的趋势;荷载位置对左侧桩体影响较大,而对右侧桩体影响较小,并且坑外荷载距基坑越远对既有深基坑支护结构影响越小;左侧桩体水平位移和最大弯矩随着荷载分布宽度增加而逐渐增大,而右侧桩体水平位移在减小且其最大弯矩略有增加;在对深基坑进行设计时,需要考虑坑外荷载的影响。  相似文献   

12.
目的为解决基坑开挖时结构的安全与稳定问题,对基坑工程的变形进行分析,找出影响规律.方法以营口某深基坑工程实例为研究背景,整理现场得到的桩顶位移、地表沉降及深层土体水平位移等监测数据,对基坑工程的支护结构和周围土体及墙后土体在施工过程中产生的位移变化进行分析.结果支护结构相同的挡墙坑角处变形最小,中间位置变形最大,并且基坑变形随着开挖深度的增加而变大.开挖深度较大的软土地区基坑周边深层土体水平位移曲线类型大致表现为抛物线形,其最大水平位移大致为(2.0~10.0)×10-4hd,通常发生在基坑工程底部附近.结论深基坑工程的支护结构顶部水平位移与竖向位移变化趋势一致,表明二者的产生条件和影响因素大致相同.坑底部下面土体的水平位移对于坑底隆起有着直接影响,支护结构的强度越低,坑底部隆起的增强区域的范围也越大.  相似文献   

13.
以两个相邻桩锚支护的基坑工程为实例,基于小应变硬化土(HSS)模型,通过Z-Soil岩土有限元分析软件建立数值计算模型,分析相邻基坑开挖对基坑变形的影响.分析结果表明:相邻桩锚基坑开挖明显减小排桩桩顶水平位移、排桩深层水平位移、坑间土体深层水平位移和坡顶水平位移,对于桩顶水平位移的影响最为显著;相邻桩锚基坑开挖也增大坑间地表沉降,产生的沉降接近两个单坑引起的沉降叠加,最大沉降位置出现在两基坑的正中央;相邻桩锚基坑的支护设计宜考虑相邻基坑开挖的影响,宜以变形不超过单坑开挖产生的水平位移为控制基准.  相似文献   

14.
目的针对郑州地区某基坑工程存在电力隧道和防空洞等复杂情况进行研究,提出采用桩锚土钉复合支护体系处理该类深基坑的方法,为类似工程提供参考.方法采用有限元软件建立同时存在电力隧道和防空洞的深基坑桩锚土钉复合支护有限元模型,模拟分析复杂环境条件下基坑工程施工过程中支护结构坡顶竖向和水平位移、深层土体水平位移以及周边建筑物的沉降以及桩身位移及内力,并与相应的监测结果进行对比分析.结果施工过程中实测基坑坡顶水平最大位移20.6 mm,沉降7.4 mm、土体深层水平位移8.4 mm,周边建筑物沉降2.1 mm,均满足规范要求.结论深基坑工程存在电力隧道和防空洞的复杂环境条件下,采用桩锚土钉复合支护体系能满足基坑的安全稳定要求和周边建筑物的保护要求.  相似文献   

15.
为了确保基坑开挖中周边环境的安全,以西安地铁某车站深基坑开挖为例,运用ABAQUS软件建立三维模型模拟开挖对周边地表沉降和围护结构变形的影响,重点研究开挖中周边地表的沉降分布规律和围护结构变形的规律,并与现场实际监测数据进行对比分析。结果表明:地表沉降的实测值比模拟计算值大,但变化趋势基本一致;在基坑开挖过程中,地表最大沉降位置距离基坑边缘约11 m处,最大值为3.298 mm;围护结构水平变形沿开挖深度的变化曲线呈抛物线形,最大水平位移位于基坑最大开挖深度的 1/2 处,最大水平位移为11.05 mm,距基坑长边边缘0~25 m及短边边边缘0~22 m范围内的地表沉降最大,施工监测中应重点关注。  相似文献   

16.
对某扇形大型深基坑工程,在扇形区采用了单排钻孔灌注桩与单排锚杆组合式围护结构和单排深层搅拌桩止水结构。在基坑开挖过程中,对深基坑围护桩进行了水平位移监测,重点监测了扇形区围护桩桩顶和桩身水平位移。监测结果显示,在未施加锚杆前,支护桩桩项水平位移较大;施加锚杆后,桩顶水平位移增加较少,在桩身弯距最大处桩身水平位移最大,并呈"鼓肚"状。结合监测数据,分析了支护桩水平位移结果的原因,并提出了运用该方案的一些建议。  相似文献   

17.
针对深基坑双排桩支护结构中圈梁的空间效应问题,利用FLAC3D模拟计算一深基坑双排桩支护工程在设置圈梁的情况下,其不同位置处桩顶位移与弯矩变化.结果发现:基坑坑角的桩顶位移明显小于中部桩顶位移,越到中部桩顶位移越大;将计算结果与现场实测资料对比表明,两者变化规律具有较好的一致性.研究表明,支护排桩与圈梁之间有较好的协同作用,圈梁对支护桩的变形和内力均有一定的影响,限制了排桩的位移和弯矩,越靠近基坑坑角其空间效应越明显.在双排桩支护结构体系设计中应考虑圈梁的空间效应,为优化设计提出建议.  相似文献   

18.
盾构井深基坑围护结构变形规律及信息化施工研究   总被引:1,自引:0,他引:1  
深基坑工程围护结构受力变形的现场监测对保证基坑的安全稳定至关重要。以北京地铁10号线某盾构竖井深基坑工程为背景,阐述了地铁盾构井的监测方案,对桩体水平位移、钢支撑轴力、桩身弯矩及桩侧土压力等项目进行了现场监测,并分析了施工开挖过程对桩体水平位移、钢支撑轴力、桩身弯矩及桩侧土压力的影响。分析结果表明:基坑开挖过程中,围护桩的最大水平位移的发生位置逐渐下移,在顶板完成后,位于距离顶板8 m的位置处;第二道钢支撑在基坑开挖过程中受力始终最大;桩体最大弯矩值约为设计值的50%;桩侧土压力层状分布较为明显。  相似文献   

19.
针对复杂填海地层深基坑支护难度大,基坑变形严重的问题,以深圳地铁13号线深登明挖区间基坑工程为例,利用弹性分析法和FLAC3D数值模拟对该基坑工程的支护结构设计和基坑变形规律进行了分析.结果表明:随着桩径和咬合量的增大,桩身水平位移减小,弯矩增大,而位移和弯矩沿桩身的分布规律基本不变,最大水平位移和最大弯矩分别发生在距...  相似文献   

20.
依托洛阳市周山大道下穿开元大道项目,对卵石地层偏压深基坑支护结构力学特性及影响因素进行研究。采用MIDAS GTS NX建立二维有限元模型,对比不同条件下支护结构侧向位移、弯矩和轴力,探讨深基坑旁偏压荷载位置、大小、分布宽度及基坑开挖深度对基坑支护体系变形的作用,得出桩身随条件变化方程式及相关系数。结果表明:当堆载达到60kPa,左侧桩体位移变幅为56.80%,右侧桩体位移小于左侧且向远离基坑方向移动,坑边荷载大于等于105kPa时桩体变形将达到本项目规定预警值;堆载与坑边距离的大小和围护桩侧移量呈极高相关,基坑至堆载距离大于1.5倍设计开挖深度时,支护结构受力变形趋于稳定;基坑开挖深度达到1.8倍设计开挖深度时,基坑灌注桩受到荷载分布宽度影响几近于零。工程实测值与模拟计算值对比分析,验证了本文方法准确性,可为偏压深基坑工程提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号