首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 做为由单层碳原子紧密堆积而成的六边形蜂窝状二维晶体,石墨烯具有高载流子迁移率、良好的生物兼容性和优异的化学稳定性。本文简要综述了石墨烯-金属纳米粒子复合薄膜在表面增强拉曼散射研究进展,以及石墨烯等离激元的激发方式和传感性能。在可见光波段,石墨烯和金属纳米粒子之间的耦合使复合薄膜具有强的光学吸收和局域电场增强,从而使复合薄膜可以作为高灵敏的表面增强拉曼基底。在中红外波段,除可以利用石墨烯微纳结构激发等离激元,还可以对介电基底进行微纳加工利用波导模式激发,使得石墨烯等离激元可能用于折射率传感。讨论了石墨烯基复合薄膜研究过程中面临的机遇和挑战,展望了其在表面增强拉曼和传感方面的应用前景。  相似文献   

2.
当前的等离激元传感主要基于表面等离极化激元和局域表面等离激元共振两种模式.然而基于表面等离极化激元的传感需要精确的入射角度及多种光学元器件的配合方能使用;而基于局域表面等离激元共振的传感由于共振线宽较宽导致其灵敏度和品质因数(figure of merit,FOM)不够高.设计了一种基于纳米颗粒/间隔层/反射层结构的具...  相似文献   

3.
利用含时密度泛函理论(time-dependent density functional theory(TDDFT)),研究了锑烯纳米结构表面等离激元的激发特性,并给出了微扰场沿着扶手椅边界和Z字边界激发时锑烯纳米结构的吸收光谱.结果表明沿不同的方向激发,吸收光谱不同.距锑烯纳米结构表面0.9处的能量共振点的电荷密度分布表明,在低能共振区,等离激元共振属于键合二聚体的等离激元模式(BDP).  相似文献   

4.
随着第六代通信技术(6G)、空间态势感知等系统对高通量、高带宽要求的进一步提高,太赫兹技术成为国际学术界和工业界的研究热点。2022年,太赫兹人工表面等离激元研究在国际上受到很大的关注,盘点了该领域的关键热点与新进展,包括基于太赫兹人工表面等离激元的无源器件、有源器件、传感器、通信系统以及生物医药应用等。人工表面等离激元对传输的电磁波具有亚波长的电场束缚能力和非线性色散特性,为太赫兹功能器件和系统应用的实现带来了新机遇。  相似文献   

5.
在法布里-珀罗谐振腔内可以实现电磁波和石墨烯中等离激元的耦合并形成等离极化激元.利用麦克斯韦方程结合边界条件得到了谐振腔中的电磁模式,研究了处于谐振腔中的石墨烯对腔模电磁波的影响,发现在太赫兹频段内,石墨烯的存在对腔模的影响较小.同时,利用麦克斯韦方程得到了谐振腔中石墨烯等离极化激元模式,发现谐振腔中石墨烯等离极化激元模式只能在谐振腔内以相对较大的波矢q存在.  相似文献   

6.
基于含时密度泛函理论,研究了环形石墨烯纳米结构的等离激元激发.在低能共振区,和同尺度大小的石墨烯纳米结构相比,环形石墨烯纳米结构光谱的主要吸收峰发生了红移;体系中有两种主要的等离激元共振模式:低能成键模式和高能反键模式.此外,环形石墨烯纳米结构的等离激元激发对体系尺度的大小也有一定的依赖性.  相似文献   

7.
起源于金属中自由电子集体振荡的表面等离激元,具有超小的光学模式体积和亚波长局域的近场增益,为纳米尺度上研究光和物质相互作用带来新的机遇.共振的纳米金属结构的近场区域,具有各向异性的珀塞尔系数,并且可以为量子体系提供近场激发.我们理论上演示了基于表面等离激元结构的单分子共振荧光、原子布居数的本征量子拍频及其在表面等离激元结构中的纳米尺度上的实现、表面等离激元诱导的各向异性珀塞尔系数导致的亚波长尺度自发辐射谱线的变化.这些结果在超紧凑的有源量子器件中有潜在应用.  相似文献   

8.
基于三维有限元法,研究了不对称纳米环/椭球二聚体的表面等离激元共振和局域场增强光学特性。结果可得可调的高阶表面等离激元共振,这样的高阶共振源于纳米环和纳米椭球之间的等离激元耦合。同时,在两个纳米结构耦合下,在纳米椭球上可以观察到环形电流,其产生了增强的局域电磁场。数值模拟结果表明,纳米环/椭球二聚体的偏心方向和偏心率对表面等离激元共振有着重要的影响。此结果在表面增强光谱学和生物传感方面都有着潜在的应用。  相似文献   

9.
过渡金属二硫化物(Transition Metal Dichalcogenides, TMDs)以其优异的光电子学特性,在诸如光捕获、光电探测、光电晶体管、发光二极管以及纳米激光器等领域中展现出了强大的应用潜力,成为当前研究前沿热点之一.少层TMDs材料的带隙处于可见和近红外区间,其激子在室温下具有很大的束缚能、高谐振子强度,且单层TMDs由于空间反演对称性的破缺具有能谷选择的圆二色性等,这些特性使得TMDs材料格外引人注目.金属纳米结构的表面等离激元具有亚波长的光局域特性,可通过合理的结构设计实现对其共振波长、频谱宽度、近场增强倍数、远场辐射特性的灵活控制.将等离激元光学结构和过渡金属二硫化物相结合可大幅拓宽纳米光子学前沿基础问题研究与纳米光电器件的设计应用.本文综述了表面等离激元和TMDs材料复合体系的最新研究进展,着重阐述了为何这类复合体系能够提供他们各自体系所不能具有的特性.比如,表面等离激元的近场增强(场局域)效应可极大增强许多纳米光学系统中的光与物质相互作用强度,可用于对TMDs材料的光吸收、光发射、光电流以及非线性光学等过程进行调制. TMDs材料具备的受外界环境调控的强激子效应和能谷选择的圆二色性等特性,可为表面等离激元纳米结构提供丰富的主动调制手段与能谷自由度.最后展望了该新型复合体系未来的研究方向和机遇.  相似文献   

10.
太赫兹作为一个大多数有机分子和生物大分子的振动和转动频率所在位置,已引起全社会的高度关注.近年来,随着太赫兹源和探测技术的不断发展更新,使得获取稳定的宽带太赫兹脉冲源成为一种常规技术.然而,相比于太赫兹波波长,由于分子的吸收截面非常小,导致微弱的相互作用,很难根据太赫兹特征光谱的变化对物质进行种类判定或定量分析的传感检测.如何增强太赫兹光谱技术的传感灵敏度,快速便捷地实现微量样品的检测,是太赫兹传感亟待解决的现实问题.电磁超表面凭借其独特的共振电场增强效应为解决这一问题提供了很好的解决方案.太赫兹等离子体激元增强传感研究自2000年起其发展已有了长足的进步,多种基于不同电磁超表面的太赫兹增强传感创新技术与方法被相继提出.本研究重点介绍这些针对太赫兹传感增强提出的表面等离子体共振传感器的最新研究进展,并详细指出它们的优势和不足.在此基础上总结了太赫兹增强传感的研究工作,并对其未来的发展方向进行展望.  相似文献   

11.
太赫兹辐射具有量子能量低、信噪比高、频率宽等一系列特殊性质,在各个领域都具有相当重要的应用前景,随着太赫兹技术的发展以及应用领域的拓展,迫切需要性能各异的太赫兹辐射源.基于光子学和电子学相结合产生辐射的方法弥补了传统电子学方法产生的辐射功率高但频率低和传统光子学方法频率高但功率低的缺点,解决了太赫兹源遇到的难题.本文根据石墨烯表面等离子体波位于太赫兹波段的独特性,采用经典电磁理论,研究电子注以任意角入射石墨烯时产生太赫兹渡越辐射的场分布和光谱角分布;通过MATLAB数值计算,分析了渡越辐射的辐射特性,以及入射角度、介质和石墨烯电导率对所产生的渡越辐射的影响,利用光谱角分布更直观地展现了渡越辐射能量的特点.石墨烯电导率的可调节特性和这种特殊的边界条件,为研究可调太赫兹辐射源提供了灵活的选择和便捷的处理方式.  相似文献   

12.
基于含时密度泛函理论,研究石墨烯量子点的等离激元激发。和宏观大小的石墨烯相比,由于量子点的尺寸和量子受限效应,石墨烯量子点的等离激元具有一些不同的特征。在低能共振区,光谱线发生展宽和劈裂。石墨烯量子点的等离激元激发依赖于边界的构型。此外,对称性对于石墨烯量子点的等离激元激发也起着重要的作用。  相似文献   

13.
基于含时密度泛函理论,研究了石墨烯量子点二聚物的等离激元激发.当2个石墨烯量子点靠近,若量子点间的间隙较大,通过电容性相互作用时,石墨烯量子点二聚物的低能等离激元共振模式随着间隙的减小发生红移.进一步减小间隙时,由于电子的隧穿,二聚物的等离激元共振模式发生了改变,杂化等离激元共振模式形成.杂化等离激元共振模式随着间隙的减小继续红移.石墨烯量子点二聚物等离激元共振模式的演化规律不依赖于石墨烯量子点的形状.  相似文献   

14.
局域表面等离激元与量子发射体构成的复合体系具有比其单个子单元更丰富的性质和功能.本文从理论上研究了量子干涉效应对复合体系吸收和散射性质的影响以及对原子体系非线性效应的调控.首先,由于存在不同跃迁通道之间的干涉,体系支持暗表面等离激元诱导的无布居数反转增益和光强依赖的吸收谱效应.其次,结构开放性诱导的干涉使复合体系能够在纳米尺度、中等强度耦合下调控散射场的光子统计性质.最后,基于表面等离激元的各向异性珀塞尔系数,在纳米尺度演示了对于克尔非线性的调控.这些发现丰富了该复合体系的吸收和散射性质以及原子体系的非线性性质,并且有可能用于量子态制备、带通滤波器、折射率传感、光子统计调控、片上的全光非线性器件等方面.  相似文献   

15.
基于含时密度泛函理论,研究碳原子链连接的石墨烯纳米结构的等离激元激发和等离激元激发诱导的电子输运。结果表明:随着链的增加,在低能共振区,体系的吸收光谱逐渐红移;当碳原子链较长时,体系在近红外、中红外光谱区都有较强的吸收。在红外光谱区,碳原子链连接的石墨烯纳米结构的等离激元共振模式还取决于碳原子链中原子数的奇偶性;在低能光谱区,强度较大的等离激元共振模式诱导的的电流强度也较大。  相似文献   

16.
金属中大量自由电子可以与电磁波耦合在金属表面形成表面等离激元(Surface Plasmon Polariton, SPP),能够将光辐射能量有效耦合并束缚在金属表面,在近场范围内形成显著的场增强效应.基于金属周期性结构形成的表面等离激元光栅在利用近场场增强效应的同时,可以灵活设计共振波长,因而在高灵敏红外探测器研发中得到广泛应用.采用半导体双量子阱(Quantum Well, QW)结构的电荷敏感型红外光晶体管探测器(Charge Sensitive Infrared Phototransistor, CSIP)是一种新型的高灵敏度红外探测器,它利用光敏浮栅(Photo-Gating)效应实现红外光电转换过程的倍增效应,因而具有波长可调、灵敏度高、光响应率高等优点.本文综述了表面等离激元光栅在CSIP红外探测器件中的设计和应用的研究进展,阐述金属孔阵列光栅的光耦合物理机制和场增强效果、偏振转换效率等特性,通过设计优化的表面等离激元耦合结构,提升CSIP器件光耦合量子效率,然后阐述了CSIP红外光探测器的生长结构、工艺流程,结合荧光谱测试、电流-电压(Current-Voltage, I-V)测试、慢步进扫描光谱测试等技术展示CSIP红外光探测器光电探测性能.最后进一步展望了SPP耦合CSIP高灵敏红外探测器的未来发展和应用研究趋势.  相似文献   

17.
微加工技术为构建基于金属纳米结构的表面等离激元光学器件提供了有效手段.然而,由微加工制得的金属纳米结构表面往往粗糙不平,这限制了纳米光学器件的功能和品质.本文基于缓慢氧化腐蚀提出一种可有效平滑金纳米结构粗糙表面的方法.通过对聚焦离子束刻蚀得到的金纳米带(nanobelt)光滑前后的光传播特性进行测量比较,证明了光滑表面有利于表面等离激元的传播.这些结果表明缓慢氧化腐蚀平滑法可用于大幅提高微加工金属纳米结构的表面等离激元光学特性,对于纳米光子器件的制造及优化具有重要意义.  相似文献   

18.
基于利用磁控溅射方法制备的纳米银颗粒,研究了纳米银颗粒局域表面等离激元对介质环境的敏感程度,作为媒介提高光与物质相互作用的可能性.研究结果表明:传感灵敏度最大可达到约931 nm/RIU,石墨烯拉曼信号可提高约40倍,可见光吸收提高约10倍.该研究表明制备简单、光学响应灵敏的纳米银颗粒在传感、光电探测及分子识别等领域具有潜在的应用价值.  相似文献   

19.
理论研究了在电介质覆盖金属波导体系中,表面缺陷结构导致的表面等离激元模式与波导模式间的相互耦合机制。在电介质层表面引入一维凹槽结构,利用凹槽结构对入射光波的散射,可以实现表面等离激元模式与波导模式间的相互转换。模式转换效应会导致在结构透射谱上出现新的能带。通过广义Fresnel公式解释了该附加能带的形成机制。利用该模式转换特性,可以实现表面等离激元模式和波导模式的方向性激发。这些结果在二维光子学器件,如布拉格反射镜、分束器和光互连中有着潜在的应用。  相似文献   

20.
基于含时密度泛函理论,研究线性稠环芳烃连接的石墨烯量子点的等离激元激发.在低能共振区,体系存在2种不同的激发模式.一种激发模式主要位于可见光及近红外光谱区,参与该激发模式的离域化π电子在整个体系中运动;随着线性稠环芳烃链长度的增加,该激发模式发生红移,并且激发强度增大.另一种激发模式主要位于5 e V附近,参与该激发模式的π电子在一个石墨烯量子点中运动,该激发模式基本上不受线性稠环芳烃链长度的影响.此外,线性稠环芳烃连接的石墨烯量子点在近红外光谱区的等离激元激发还依赖于石墨烯量子点的形状.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号