首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BOF-LF-RH-CC流程钢液增氮控制研究   总被引:1,自引:1,他引:0  
通过对25Mn2和36Mn2V转炉冶炼钢种氮含量取样分析,得出各工序氮含量变化的规律,研究各工序增氮机制及氮含量控制措施。结果表明,增氮量从大到小的工序依次为大包至中包的长水口段、LF精炼段、转炉出钢段,RH真空处理段钢水氮含量有所下降;采用适当的终点高拉碳工艺可降低终点氮含量;采用高碱度低熔点预熔渣覆盖钢液面和控制LF吹氩强度可减少精炼前期吸氮和避免钢水被吹裸而引起的吸氮;适当延长极限真空度保持时间有利于进一步降低钢水中的氮含量。  相似文献   

2.
针对企业冶炼超低碳铝镇静钢过程中增氮量高、波动大及控制不稳定的问题,采用工艺数据统计和现场取样的手段,系统梳理了冶炼过程钢液脱氮和增氮的主要环节和影响因素.转炉脱碳期和真空处理是脱氮的主要环节,碳氧期的总脱碳量高则终点氮含量低;转炉底吹N2/Ar切换点在吹炼70%以前对终点氮含量影响不大;VD在无氧条件下脱氮有利,RH则在有氧条件下脱氮有利.控制钢中溶解氧>200×10-6则出钢过程增氮可控制在5×10-6以下;炉料的氮带入是真空精炼环节增氮的重要因素,最高达11×10-6;采用密封垫+吹Ar的保护方式,增氮量最低为1×10-6.  相似文献   

3.
复吹转炉多功能法脱磷工艺   总被引:1,自引:0,他引:1  
在不新增设备的前提下,通过优化转炉冶炼工艺,使用复吹转炉多功能法进行铁水脱磷,提高转炉脱磷率.根据现有转炉设备条件,通过热力学计算确定转炉前期脱磷温度范围,并在现场实验中掌握好倒渣时机、渣碱度、加料量和出钢温度,确定最佳脱磷工艺.分析实验结果,与常规冶炼相比,该脱磷工艺用原料量少,脱磷率稳定,且高达90%以上,在提高钢水质量的同时也降低了生产成本.  相似文献   

4.
转炉铁水预处理脱磷的基础理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对转炉铁水预处理脱磷过程中选择性氧化的热力学和动力学分析,并结合首钢京唐公司300 t脱磷转炉的生产数据,研究熔池中铁、硅、锰、碳、磷的氧化过程,讨论影响磷在渣铁间分配比以及脱磷速率的主要因素.研究表明,将转炉铁水预处理温度控制在较低范围内(1 300~1 350 ℃),选择具有合适碱度(1.7~2.5)和成渣快的造渣工艺,并结合高的底吹搅拌强度(≥0.2 Nm3/(t·min)),这是实现脱磷保碳、提高脱磷速率、加快生产节奏的有效途径.  相似文献   

5.
在真空或真空吹氩条件下,研究了CaO-Bao-Al2O3-TiO2,CaO-MgO-Al2O3-SiO2-CaF2渣对钢液脱氮的影响,结果表明,熔渣降低真空脱氮速率,底吹氩能减少熔渣对真空脱氮的 阻力。  相似文献   

6.
氮的溶解度及预处理过程脱氮的实验研究   总被引:2,自引:0,他引:2  
在实验室1573~1673K条件下对铁水预处理过程进行了脱氮研究.结果表明,铁液中氧、硫和碳含量都在不同程度上影响氮在铁水中的溶解度,并用线形回归方法得到了氮溶解度与碳含量的关系式.预处理过程中初始碳含量对脱氮影响较为明显,在供氧强度相同的条件下,脱氮量随着铁水中碳含量的增加而增加.同时研究发现过程脱碳的同时能有效地脱氮,且脱碳量越大脱氮率越高.终点最低氮含量可达13×10-6,脱氮率超过50%,可满足超低氮钢对铁水中氮含量的要求.  相似文献   

7.
顶底复吹转炉底吹CO2—N2的冶金特性   总被引:1,自引:0,他引:1  
在60kg顶底复吹转炉上进行了底吹CO_2、N_2、CO_2+N_2、CO_2+Ar_4种气体的实验,通过比较不同底吹气体的实验结果,对复吹转炉底吹不同性质气体的冶金特性进行了研究。主要讨论了底吹不同性质气体对熔池氧化性、脱碳反应和钢中氮的行为等的影响。  相似文献   

8.
根据复吹转炉冶炼中磷铁水的试验数据,对磷氧化过程进行了分析计算,揭示了顶底吹氧并以天然气为底枪冷却介质的复吹转炉中,磷的氧化特性,从理论上阐述上此方法的优越性。  相似文献   

9.
本文研究了用不同孔径透气塞吹氮处理高炉铁水及过共晶重熔铁水对铸铁石墨和 性能的影响.研究结果表明用工业透气塞吹氮处理能显著减少石墨漂浮;不同孔径的 透气塞吹氮处理对过共品铸铣的石墨形态有不同程度的影响,经过吹氮处理,片状石 墨变成了点状、团片伏、球状石墨.从而显著地提高机械性能。此项研究结果为高炉 铁水直接浇注捉洪一种新的工艺方法。  相似文献   

10.
LD 转炉炼钢法是目前世界上的主要炼钢法。底吹氧气转炉问世后,由于加强了熔池搅拌,改善了转炉冶金特性,因此促使顶吹和底吹的技术合并,以兼其长。国内外已有改顶吹转炉为顶底吹转炉的趋势。但改顶吹为顶底吹亦要解决底吹介质来源、底吹构件、严格管理等问题。目前我国某些中小型企业的装备水平和管理水平一时难以达到,可探讨采用基本接近顶底复合吹炼冶金特性而设备不太复杂,操作又较简单,可改善 LD 技术经济指标的旋转氧枪转炉炼钢法。  相似文献   

11.
近年来,在国外底吹氧气转炉有所发展,它是炼钢工业技术发展的新动向之一。据了解,国外采用底吹氧气转炉炼钢与顶吹氧气转炉比较,在钢的质量相同的条件下,还具有多用废钢百分之二十、金属收得率高、烟尘少等优点。尤其值得注意的是:采用底吹氧气转炉对于现有的平炉、底吹空气转炉和侧吹转炉的技术改造有着现实意义。底吹氧气转炉的厂房不象顶吹氧气转炉那样高,利用原有的平炉或底吹空气转炉的厂房、吊车等,很容易改为底吹氧气转炉,大大地节约了投资。  相似文献   

12.
在实验室25kg顶底复合吹转炉上进行了中磷铁水(0.5—1.0%[P])脱磷试验。以块状石灰和铣皮为造渣剂,釆用双渣不留渣法操作,研究了冶炼中炉渣成分及温度对脱磷的影响,并提出了合适的炉渣成分及温度控制。  相似文献   

13.
首钢为降低82B生产成本,提高产品质量,在高炉原料中加入了钒钛球团矿.钒钛球团矿的加入导致转炉生产化渣慢,脱磷效率低,溅渣护炉效果不佳等问题.为了解决高钒钛铁水转炉生产82B所遇到的问题,本文以首钢炼钢厂转炉生产82B工艺为研究对象,利用Fluent数值模拟结合工业试验共同优化了转炉高VTi铁水冶炼82B供氧制度.通过供氧制度的优化,提高了转炉处理高VTi铁水的能力,从而保障首钢生产出高品质低成本的82B.  相似文献   

14.
基于二氧化碳与氧气混合喷吹(简称COMI)炼钢工艺热力学理论计算及实验研究,建立了转炉全铁水COMI炼钢工艺物料与能量模型.研究发现:应用COMI炼钢工艺进行转炉全铁水冶炼工艺研究不仅能解决转炉全铁水常规冶炼过程中存在的大渣量及大喷溅问题,而且在提高转炉煤气热值,降低转炉吨钢氧耗及石灰消耗、调节矿石加入量方面有显著效果.  相似文献   

15.
介绍了废水脱氮的几种处理方法包括 :空气吹脱法、折点加氯法、沸石吸附法、絮凝沉淀法、A/ O法、SBR法及氧化沟法 ,并着重介绍了生化法的处理原理、流程、操作条件及各自的优缺点  相似文献   

16.
电流和碳氮的量比对生物电极脱氮速率影响的模拟   总被引:2,自引:0,他引:2  
研究了脱氮过程中生物膜内的物质运动和反应机理,在已建立的生物电极模型的基础上,对以下3种情况下生物膜内反应物浓度分布以及电流和有机物时脱氮速率的影响进行了研究:只利用水电解产生的氢气作为电子供体;只利用醋酸作为电子供体;氢气和醋酸同时作为电子供体.研究结果表明:增加电流和碳氮的量比都能提高脱氮速率,但只增大电流或碳氮的量比,脱氮速率的提高程度不大,且随着碳氮的量比的增大,出水中硝酸氮浓度不断降低,残留醋酸浓度也随之提高,影响出水水质;当同时通电和添加醋酸时,脱氮速率显著加快;但过大的电流和碳氮的量比反而不利于脱氮的进行,因此,存在碳氮的量比和电流的最佳组合,在此条件下,出水中残留醋酸浓度最低,脱氮速率最高.当碳氮的量比为0.7,电流为100 mA时的脱氮速率比只通电时的脱氮速率增大了约1倍.  相似文献   

17.
全程自养生物脱氮工艺(completely autotrophic nitrogen removal over nitrite, CANON)具备有机碳源投加少、能耗低、占地面积小、操作简单等优点,成为污水处理领域的重要研究对象。因此综述了全程自养生物脱氮工艺的机理、影响因素,分析了温度、pH、溶解氧(dissolved oxygen, DO)、基质浓度等因素对脱氮效果的影响,为全程自养生物脱氮工艺优化提供参考。  相似文献   

18.
本文根据济钢210吨转炉脱磷情况,主要从转炉脱磷的理论分析入手,对冶炼过程中前期温度、炉渣碱度、渣中(FeO)、转炉底吹效果等对终点磷的影响及回磷的原因、影响因素及防范措施等进行了探讨,同时本文指出应控制的参数:炉渣碱度、渣中(FeO)、终点温度在合理范围内,并重视钢水回磷问题。  相似文献   

19.
铁水包顶底喷粉脱硫对比试验研究   总被引:1,自引:1,他引:0  
通过狭缝式喷粉透气砖底喷吹和常规喷枪顶喷吹两种方式,将电石基粉喷入20 t铁水包中对含镍铁水进行脱硫对比试验.结果表明:在每吨铁脱硫粉剂消耗量为4 kg铁条件下,底喷粉工艺脱硫率为81%~90%,铁水温降为23~36℃;顶喷粉工艺脱硫率为59%~73%,铁水温降为45~70℃.顶、底喷粉处理时间无明显区别,底喷粉处理总时间始终比顶喷粉处理时间短约5 min.底喷吹脱硫工艺具有脱硫效率高、铁水温降小、处理周期短等优点.  相似文献   

20.
鞍钢炼钢生产工序节能方向及有效途径(1)提高废钢比,进行多吃废钢的技术研究,降低吨钢综合能耗;(2)实现铁水保温措施,提高人炉铁水温度;(3)实现转炉生产的自动化高水平,如在三炼钢厂对3号转炉实现动态控制炼钢,每炉缩短炼钢时间4~5分钟,年创经济效益...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号