首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
基于金属纳米颗粒的几何特征及其幻数结构构建了一系列不同粒径和形貌的Pt纳米颗粒,利用改进分析型嵌入原子势与淬火分子动力学模拟研究了其结构稳定性。一方面揭示了各表面位比例、比表面积、平均配位数与粒径、形貌的定量关系;另一方面预测了晶体结构Pt纳米颗粒的平均原子结合能与颗粒尺寸的线性关联;二十面体形貌具有最密排的表面,尺寸较小时表面能的贡献使之成为首选结构,但大尺寸时应变能使之最不稳定;由于应变能的释放,晶态截切多面体小颗粒的稳定性与二十面体相仿,尺寸增大时具有最高稳定性。  相似文献   

2.
利用溶胶—凝胶法制备Co Pt,Co Pt-Ag,Co Pt-Si O2,Co Pt-Cu磁性纳米颗粒.并利用X射线衍射仪(XRD),透射电子显微镜(TEM)和振动样品磁强计(VSM)对所制备的样品进行了结构,形貌和磁性的表征.XRD结果表明700℃时Co Pt,Co Pt-Ag,Co Pt-Si O2,Co Pt-Cu磁性纳米颗粒均为面心四方结构(FCT)的L10相.TEM结果表明Co Pt-Si O2较Co Pt,Co Pt-Ag,Co Pt-Cu的颗粒尺寸小,说明了Si O2的添加抑制了Co Pt磁性纳米颗粒的尺寸生长.VSM结果显示Co Pt-Ag,Co Pt-Cu,Co Pt-Si O2较Co Pt的矫顽力大,说明一定量的Ag,Cu,Si O2的添加更能促进Co Pt纳米颗粒磁性的增长.  相似文献   

3.
采用分子动力学模拟方法研究了不同尺寸Au纳米颗粒在烧结过程中晶型转变及烧结颈长大机制.研究发现纳米颗粒的烧结颈生长主要分为两个阶段:初始烧结颈的快速形成阶段和烧结颈的稳定长大阶段.不同尺寸纳米颗粒烧结过程中烧结颈长大的主要机制不同:当颗粒尺寸为4 nm时,原子迁移主要受晶界(或位错)滑移、表面扩散和黏性流动控制;当尺寸在6nm左右时,原子迁移主要受晶界扩散、表面扩散和黏性流动控制;当颗粒尺寸为9 nm时,原子迁移主要受晶界扩散和表面扩散控制.烧结过程中Au颗粒的fcc结构会向无定形结构转变.此外,小尺寸的纳米颗粒在烧结过程中由于位错或晶界滑移、原子的黏性流动等因素会形成hcp结构.  相似文献   

4.
电化学法制备纳米铜粉   总被引:4,自引:0,他引:4  
在十二烷基硫酸钠、吐温80、苯、正丁醇、十二烷基硫醇和硫酸铜混合而成的乳液中,采用电化学合成的方法制备稳定的、粒径均匀的Cu纳米颗粒.采用XRD、TEM及FT-IR对所制备的Cu纳米颗粒的结构、形貌、粒径大小及表面键合性质进行表征.结果表明,制备的纳米铜粉为球型颗粒,分散较好,尺寸较为均匀,约为60~80 nm,并且具有立方晶型结构;得到的纳米铜颗粒表面含有一层有机物质,形成了包覆层较薄的核壳结构,这种包覆层阻止了纳米铜粉在空气中或水中的团聚和氧化,起到提高纳米铜颗粒的分散性和稳定性的作用.  相似文献   

5.
采用基于密度泛函理论的第一性原理计算程序包VASP(Vienna ab-initio Simulation Package)对Pt13,Ni13及Pt-Ni合金二十面体团簇进行了计算机模拟研究.研究表明,Pt13和Ni13团簇显现出完美的Ih(正二十面体)对称性,Pt13团簇的磁矩为2.13μB,Ni13团簇的平均原子磁矩也比其体块的原子磁矩有所增大.对Pt-Ni合金团簇,Pt原子倾向于偏析到团簇表面,团簇的平均最近邻键长随着Ni原子数目的增多而单调减小,总磁矩可通过Ni含量的变化而进行调制.  相似文献   

6.
通过考察水与表面活性剂的摩尔比(R),TEOS的量、氨水的量及包壳次数对基于Triton X - 100/环已烷/正已醇/水反相微乳液体系制备二氧化硅纳米颗粒尺寸的影响,开展了基于反相微乳液法的尺寸可控性二氧化硅纳米颗粒制备研究.结果表明:在其他参数都恒定的情况下,通过改变微乳液体系中上述某一组分的量,可以在一定程度上实现二氧化硅纳米颗粒的尺寸可控性合成.首先,水与表面活性剂的摩尔比(R)对二氧化硅纳米颗粒的尺寸影响最大,随着R值的增大,颗粒的粒径逐渐减小,当R值达到18时,二氧化硅纳米颗粒的形貌变得不再是很规则的球形结构,并且分散性降低,团聚现象明显;其次是氨水的量,随着氨水量的增多,颗粒的粒径先减小,之后不再发生明显变化;另外随着包壳次数的增多,颗粒的粒径随之增大,并且颗粒之间的分散性也有所提高;但是TEOS的量对颗粒粒径的影响不明显.  相似文献   

7.
为研究Pt-Pd合金纳米粒子的稳定结构,进一步了解其催化性能,采用改进粒子群(PSO)算法并分别结合量子修正的Sutton-Chen(QSC)多体势和紧束缚二阶矩阵近似势(TBM),对具有不同尺寸和不同原子比例的高晶指数二十四面体Pt-Pd合金纳米粒子的结构稳定性进行对比研究.结果表明:QSC和TBM势函数下得到的原子分布趋势一致.当Pt原子比例较小时,两种势函数下的稳定结构都偏向于壳层结构的分布;随着Pt原子比例的增加,TBM势函数下的稳定结构呈类壳层结构分布,而QSC势函数的稳定结构呈核壳分布,其偏聚程度更高.  相似文献   

8.
通过考察水与表面活性剂的摩尔比(R),TEOS的量、氨水的量及包壳次数对基于Triton X 100/环已烷/正已醇/水反相微乳液体系制备二氧化硅纳米颗粒尺寸的影响,开展了基于反相微乳液法的尺寸可控性二氧化硅纳米颗粒制备研究.结果表明:在其他参数都恒定的情况下,通过改变微乳液体系中上述某一组分的量,可以在一定程度上实现二氧化硅纳米颗粒的尺寸可控性合成.首先,水与表面活性剂的摩尔比(R)对二氧化硅纳米颗粒的尺寸影响最大,随着R值的增大,颗粒的粒径逐渐减小,当R值达到18时,二氧化硅纳米颗粒的形貌变得不再是很规则的球形结构,并且分散性降低,团聚现象明显;其次是氨水的量,随着氨水量的增多,颗粒的粒径先减小,之后不再发生明显变化;另外随着包壳次数的增多,颗粒的粒径随之增大,并且颗粒之间的分散性也有所提高;但是TEOS的量对颗粒粒径的影响不明显.  相似文献   

9.
以氯化锌和氢氧化钠为反应物,中空纤维膜为分散介质,采用双膜分散法制备氧化锌颗粒。研究了两膜组件间距、分散相流速及表面活性剂对颗粒尺寸和形貌的影响。所得产物的SEM和粒度分布分析结果表明:两膜组件间距对颗粒平均尺寸无明显影响;无表面活性剂时,颗粒尺寸随着分散相流速的增大而增大,当流速从10 mL/min增大到40 mL/min时,平均粒径从307 nm增大到476 nm;表面活性剂的加入能有效抑制颗粒的生长,且颗粒尺寸随着分散相流速的增大而减小,当分散相流速由20 mL/min增至70 mL/min时,颗粒平均粒径由182 nm减小到45 nm。  相似文献   

10.
采用化学气相沉积(CVD)法制备得到纳米碳微球(CS),采用浸渍还原法合成了Pt/CS纳米颗粒。电镜观察表明颗粒具有光滑的表面,其平均粒径在300nm左右,同时在产物中没有观察到纳米管和其它杂质。从HRTEM表征结果得出CS上的Pt颗粒分散均匀,直径分布在3~4nm之间。表明在溶液中使用Pt/CS催化剂时Pt颗粒可以均匀的分散于CS表面。在催化剂中Pt的含量为18%。这种较为理想的Pt/CS颗粒分布结果有利于其在燃料电池电极中的电催化作用。  相似文献   

11.
以次磷酸钠(NaH_2 PO_2·H_2O)为还原剂,硫酸铜(CuSO_4·5H_2O)为前驱体,十六烷基三甲基溴化铵(CTAB)为表面活性剂,聚乙烯吡咯烷酮(PVP)为保护剂,在一缩二乙二醇(DEG)有机液相溶液中采用化学还原法成功地制备了铜纳米颗粒.采用XRD、TEM、SEM、纳米粒度仪及IR对所制备的铜纳米颗粒的结构、形貌、粒径大小及表面物质进行表征.结果表明制备的纳米铜粒子为球型颗粒,分散较好,尺寸较为均匀,平均粒径约为27 nm,并且具有立方晶型结构,其表面被有机物包覆.涂布纳米铜导电墨水的样品,其在高于250℃的温度下烧结60min后得到导电铜薄膜.温度在300℃烧结后,导电铜薄膜更加致密,可以推测铜薄膜的导电性能会增加.  相似文献   

12.
采用乙二醇微波辅助还原方法,制备了1,10-邻二氮杂菲非共价功能化石墨烯负载的铂纳米颗粒(Pt/Phen-G),并用SEM和XRD对其形貌和结构进行了表征.研究结果表明,铂颗粒均匀分散在1,10-邻二氮杂菲非共价修饰的石墨烯表面,粒径大约为2.3 nm,明显小于石墨烯上直接沉积的Pt纳米颗粒(Pt/G)的2.8 nm.硫酸中的循环伏安曲线也表明,Pt/Phen-G有更大的电化学活性表面积.用旋转圆盘电极对Pt/Phen-G和Pt/G电催化氧还原进行了测试,发现Pt/Phen-G催化氧还原的电位有所正移;在0.5 V(Vs.Ag/AgCl)电位下,当转速为1 225 r/min时,Pt/Phen-G的质量活性是Pt/G的1.4倍.  相似文献   

13.
在乙醇-水体系中,以N,N'-二丁基二硫代氨基甲酸烷基酯为修饰剂,在NaOH和十六烷基三甲基溴化铵(CTAB)存在下,用硼氢化钠还原硫酸铜,制备了粒径、形貌可控的单分子层表面修饰铜纳米颗粒.利用FT-IR、TEM、XPS、UV-Vis等手段对铜纳米颗粒进行了表征.结果表明:修饰剂对铜纳米颗粒的粒径大小、分布、形貌有一定影响,N,N'-二丁基二硫代氨基甲酸烷基酯能在铜纳米颗粒表面形成较紧密的吸附层,有效提高了铜纳米颗粒的稳定性和分散性,并且随着修饰剂烷基链的增长,铜纳米颗粒的粒径略有增大.  相似文献   

14.
通过碱性环境水热法制备了TiO2纳米颗粒,以异丙醇钛作为钛源,四乙基氢氧化铵作为碱性解胶剂.研究了四乙基氢氧化铵的浓度以及水热温度对TiO2纳米颗粒的影响.通过XRD、TEM对合成的TiO2晶粒尺寸、晶相以及形貌进行了表征.实验结果表明,使用四乙基氢氧化铵作为解胶剂,合成的TiO2颗粒由纯锐钛矿相组成,形状呈拉长的截断四方双锥结构.由于解胶的碱性环境,在TiO2的表面形成了富氧表面,使得在TiO2纳米颗粒表面更多的是热动力学稳定性更好的(101)和(001)面.制备的平均粒径大小为14 nm的TiO2纳米颗粒用于染料敏化太阳能电池中作为光阳极.通过电化学阻抗谱(EIS)分析了此种TiO2颗粒的电子传输特性.在AM1.5的模拟太阳光下,使用这种TiO2纳米颗粒作为光阳极的染料敏化太阳能电池获得了超过7%的光电转换效率.  相似文献   

15.
基于计算合金形成焓的改进Miedema模型和考虑纳米颗粒表面效应,研究了钛基二元纳米合金形成焓的尺寸和成分效应.计算结果表明钛基二元合金纳米颗粒的形成焓依赖颗粒尺寸,显示了明显的尺寸效应.纳米颗粒的形成焓随粒径的减小而增大,当粒径减小到某一临界尺寸时,纳米合金的形成焓由负值转变为正值,从而降低了纳米颗粒的热稳定性.当颗粒粒径小于10 nm时,纳米颗粒发生成分聚集,这种成分聚集发生的趋势取决于纳米合金的表面形成焓.  相似文献   

16.
制备特定尺寸的纳米金颗粒方法及性能表征   总被引:1,自引:0,他引:1  
通过化学还原法制备出不同粒径的纳米金颗粒。利用紫外可见分光光度计和透射电子显微镜对纳米金颗粒的形貌及尺寸进行表征。讨论了还原剂种类、还原剂用量、试剂加入顺序、反应温度等因素对纳米金颗粒稳定性、粒径、形貌和分散性的影响。结果表明:Na3C6H5O7为还原剂制得纳米金颗粒粒径在15-20 nm之间,NaBH4为还原剂制得的...  相似文献   

17.
在反胶束体系中制备Fe3O4/SiO2核壳结构纳米粒子,并利用透射电子显微镜表征颗粒的结构和形貌.首先,在水体系中采用共沉淀法制备平均粒径为13 nm的Fe3O4纳米粒子,并用有机小分子柠檬酸对其进行表面修饰,加入氨水后形成稳定的Fe3O4胶体溶液.然后,将此胶体溶液作为水相滴加到Triton X-100/环己烷/正丁醇的表面活性剂/油相/助表面活性剂溶液体系中,搅拌后形成稳定的油包水反胶束体系.在反胶束内以氨水为催化剂,使正硅酸乙酯水解,从而获得SiO2包覆的Fe3O4核壳结构纳米粒子.实验结果表明,改变水和表面活性剂Triton X-100的浓度比ω,可以达到调控核壳结构纳米粒子形貌的目的.当ω=9时,可获得尺寸均匀、平均粒径约为100 nm的Fe3O4/SiO2核壳结构纳米粒子.  相似文献   

18.
利用溶胶—凝胶法制备了(Fe Pt)100Cu0,(Fe Pt)95Cu5,(Fe Pt)90Cu10纳米颗粒.通过XRD、TEM、VSM等测试方法对样品的磁性及形貌结构进行了表征,并阐释了掺杂Cu元素对Fe Pt合金的影响.研究发现,Cu原子取代了Fe Pt合金中Fe或Pt原子的位置,但Cu掺杂并没有破坏有序相Fe Pt合金的结构.随着Cu掺杂浓度的提高,样品的矫顽力增大但是磁化强度减小.和未掺杂Cu的纯Fe Pt纳米颗粒相比,Cu的掺杂降低了Fe Pt的有序化温度,增加了样品的有序化程度.(Fe Pt)90Cu10纳米颗粒的矫顽力为7 050 Oe,而(Fe Pt)100Cu0纳米颗粒的矫顽力提高到了9 746 Oe.  相似文献   

19.
运用电化学循环伏安法在玻碳载体上制备纳米级厚度的Pt膜电极,用STM表征了电极表面的形貌,测定了电沉积层的厚度、表面积和Pt载量。结果表明,电沉积的碳载Pt电催化材料是一种由粒度均匀的纳米颗粒构成的纳米薄层,表面形貌以层状结构为主,属于多晶结构;同时,运用电化学循环伏安法研究了Sb在碳载纳米Pt膜电极(记为nm-Pt/GC)表面不可逆吸附的电化学特性。研究发现,当扫描电位的上限Eu≤0.50V(SCE)时,Sbad可以稳定地吸附在nm-Pt/GC电极表面,满覆盖度为0.325;并可方便地通过控制电位扫描上限和扫描圈数剥离部份Sb得到Sbad的不同覆盖度。  相似文献   

20.
通过超重力反溶剂沉淀法制备了阿霉素纳米药物颗粒,考察了不同转子转速和溶剂-反溶剂流量比对阿霉素纳米药物颗粒的形貌和粒径的影响。通过扫描电子显微镜(SEM)和动态光散射(DLS)对纳米药物颗粒的形貌和平均粒径进行了表征,研究结果表明:当超重力转子转速为2180 r/min,溶剂和反溶剂的流量比为1∶15时,制备的阿霉素纳米药物颗粒平均粒径较小,水相稳定性优良。利用紫外分光光度计(UV)对阿霉素纳米药物颗粒的体外溶出速率进行了表征,与阿霉素原料药相比,本文制备的阿霉素纳米药物的溶出速率提高了近4倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号