首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
H Mayer  W Bollag  R H?nni  R Rüegg 《Experientia》1978,34(9):1105-1119
A review of recent investigations in the retinoid field is presented. Retinoic acid exerts a prophylactic and a therapeutic effect on chemically induced benign and malignant epithelial tumors in mice. In clinical studies positive therapeutic results have been obtained in patients with preneoplastic and neoplastic epithelial lesions. However, treatment with retinoic acid is limited by serious side effects (hypervitaminosis A syndrome). Therefore, the synthesis of analogs of retinoic acid (retinoids) possessing a more favorable therapeutic ratio has been initiated. Among a large series of synthesized compounds, certain aromatic analogs proved to have a particularly favorable therapeutic ratio. The structure-activity relationship of the most active retinoids is discussed including some biological data concerning prophylaxis and therapy of epithelial tumors. The total synthesis of retinoids according to various building schemes is discussed in detail. Methods for the synthesis of the cyclic end group, of the polyene chain component, and of the full retinoid skeleton are described. Metabolic studies of retinoic acid and of the most active retinoid, as well as the synthesis of some isolated metabolites are outlined. Suggestions concerning the mechanism of action of retinoids are made. Some clinical results on the treatment of acne, psoriasis and precancerous conditions are reported.  相似文献   

2.
Summary A review of recent investigations in the retinoid field is presented. Retinoic acid exerts a prophylactic and a therapeutic effect on chemically induced benign and malignant epithelial tumors in mice. In clinical studies positive therapeutic results have been obtained in patients with preneoplastic and neoplastic epithelial lesions. However, treatment with retinoic acid is limited by serious side effects (hypervitaminosis A syndrome). Therefore, the synthesis of analogs of retinoic acid (retinoids) possessing a more favorable therapeutic ratio has been initiated. Among a large series of synthesized compounds, certain aromatic analogs proved to have a particularly favorable therapeutic ratio. The structure-activity relationship of the most active retinoids is discussed including some biological data concerning prophylaxis and therapy of epithelial tumors. The total synthesis of retinoids according to various building schemes is discussed in detail. Methods for the synthesis of the cyclic end group, of the polyene chain component, and of the full retinoid skeleton are described. Metabolic studies of retinoic acid and of the most active retinoid, as well as the synthesis of some isolated metabolites are outlined. Suggestions concerning the mechanism of action of retinoids are made. Some clinical results on the treatment of acne, psoriasis and precancerous conditions are reported.Based on a lecture presented at the Symposium on Horizons in Medicinal Chemistry, Centennial ACS Meeting, New York, 6 April, 1976.  相似文献   

3.
The retinoic acid (RA) signaling pathway regulates axial patterning and neurogenesis in the developing central nervous system (CNS) of chordates, but little is known about its roles during peripheral nervous system (PNS) formation and about how these roles might have evolved. This study assesses the requirement of RA signaling for establishing a functional PNS in the cephalochordate amphioxus, the best available stand-in for the ancestral chordate condition. Pharmacological manipulation of RA signaling levels during embryogenesis reduces the ability of amphioxus larvae to respond to sensory stimulation and alters the number and distribution of ectodermal sensory neurons (ESNs) in a stage- and context-dependent manner. Using gene expression assays combined with immunohistochemistry, we show that this is because RA signaling specifically acts on a small population of soxb1c-expressing ESN progenitors, which form a neurogenic niche in the trunk ectoderm, to modulate ESN production during elongation of the larval body. Our findings reveal an important role for RA signaling in regulating neurogenic niche activity in the larval amphioxus PNS. Although only few studies have addressed this issue so far, comparable RA signaling functions have been reported for neurogenic niches in the CNS and in certain neurogenic placode derivatives of vertebrates. Accordingly, the here-described mechanism is likely a conserved feature of chordate embryonic and adult neural development.  相似文献   

4.
The currently available medical treatment options of adrenocortical cancer (ACC) are limited. In our previous meta-analysis of adrenocortical tumor genomics data, ACC was associated with reduced retinoic acid production and retinoid X receptor-mediated signaling. Our objective has been to study the potential antitumoral effects of 9-cis retinoic acid (9-cisRA) on the ACC cell line NCI-H295R and in a xenograft model. Cell proliferation, hormone secretion, and gene expression have been studied in the NCI-H295R cell line. A complex bioinformatics approach involving pathway and network analysis has been performed. Selected genes have been validated by real-time qRT-PCR. Athymic nude mice xenografted with NCI-H295R have been used in a pilot in vivo xenograft model. 9-cisRA significantly decreased cell viability and steroid hormone secretion in a concentration- and time-dependent manner in the NCI-H295R cell line. Four major molecular pathways have been identified by the analysis of gene expression data. Ten genes have been successfully validated involved in: (1) steroid hormone secretion (HSD3B1, HSD3B2), (2) retinoic acid signaling (ABCA1, ABCG1, HMGCR), (3) cell-cycle damage (GADD45A, CCNE2, UHRF1), and the (4) immune response (MAP2K6, IL1R2). 9-cisRA appears to directly regulate the cell cycle by network analysis. 9-cisRA also reduced tumor growth in the in vivo xenograft model. In conclusion, 9-cisRA might represent a promising new candidate in the treatment of hormone-secreting adrenal tumors and adrenocortical cancer.  相似文献   

5.
Translation of nutrient stimuli through intracellular signaling is important for adaptation and regulation of metabolic processes, while deregulation by either genetic or environmental factors predisposes towards the development of metabolic disorders. Besides providing energy, fatty acids act as prominent signaling molecules by altering cell membrane structures, affecting the lipid modification status of proteins, and by modulating ligand-activated nuclear receptor activity. Given their highly hydrophobic nature, fatty acids in the aqueous intracellular compartment are bound to small intracellular lipid binding proteins which function as intracellular carriers of these hydrophobic components. This review describes recent advances in identifying intracellular pathways for cytosolic fatty acid signaling through ligand activated receptors by means of small intracellular lipid binding proteins. The mechanism behind intracellular fatty acid transport and subsequent nuclear receptor activation is an emerging concept, and advances in understanding this process provide new potential therapeutic targets towards the treatment of metabolic disorders.  相似文献   

6.
A number of recent studies from as diverse fields as plant–pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine’s ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla.  相似文献   

7.
8.
Netrin-1 has been shown to play a crucial role in neuronal navigation during nervous system development mainly through its interaction with its receptors DCC and UNC5H. However, initially the DCC (deleted in colorectal cancer) gene was proposed as a putative tumor suppressor gene. It was then difficult to reconcile the two activities of DCC until the observation that DCC belongs to an emerging family of receptors named dependence receptors. Such receptors share the property of inducing apoptosis in the absence of ligand, hence creating a cellular state of dependence on the ligand. Thus, netrin-1 may not only be a chemotropic factor for neurons but also a survival factor. We will review here the identification of netrin-1 and its receptors, the signaling pathways initiated in the presence or absence of netrin-1. We will suggest some possible roles of netrin-1 in nervous system development, neovascularisation, adhesion and tumorigenesis.  相似文献   

9.
Proper brain connectivity and neuronal transmission rely on the accurate assembly of neurotransmitter receptors, cell adhesion molecules and several other scaffolding and signaling proteins at synapses. Several new exciting findings point to an important role for the neuroligin family of adhesion molecules in synapse development and function. In this review, we summarize current knowledge of the structure of neuroligins and neurexins, their potential binding partners at the synapse. We also discuss their potential involvement in several aspects of synapse development, including induction, specificity and stabilization. The implication of neuroligins in cognitive disorders such as autism and mental retardation is also discussed. Received 6 February 2006; received after revision 17 March 2006; accepted 26 April 2006  相似文献   

10.
The thyroid hormone 3,3,5-triiodo-l-thyronine (T3) mediates several physiological processes, including embryonic development, cellular differentiation, metabolism, and the regulation of cell proliferation. Thyroid hormone receptors (TRs) generally act as heterodimers with the retinoid X receptor (RXR) to regulate target genes. In addition to their developmental and metabolic functions, TRs have been shown to play a tumor suppressor role, suggesting that their aberrant expression can lead to tumor transformation. Conversely, recent reports have shown an association between overexpression of wild-type TRs and tumor metastasis. Signaling crosstalk between T3/TR and other pathways or specific TR coregulators appear to affect tumor development. Since TR actions are complex as well as cell context-, tissue- and time-specific, aberrant expression of the various TR isoforms has different effects during diverse tumorigenesis. Therefore, elucidation of the T3/TR signaling mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a summary of recent studies focusing on the role of TRs in hepatocellular carcinomas (HCCs).  相似文献   

11.
12.
Bile acids are cholesterol metabolites that have been extensively studied in recent decades. In addition to having ancestral roles in digestion and fat solubilization, bile acids have recently been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor farnesoid X receptor (FXRα) or of the G protein-coupled receptor TGR5. In this review, we will focus on the emerging role of FXRα, suggesting important functions for the receptor in steroid metabolism. It has been described that FXRα is expressed in the adrenal glands and testes, where it seems to control steroid production. FXRα also participates in steroid catabolism in the liver and interferes with the steroid signaling pathways in target tissues via crosstalk with steroid receptors. In this review, we discuss the potential impacts of bile acid (BA), through its interactions with steroid metabolism, on glucose metabolism, sexual function, and prostate and breast cancers. Although several of the published reports rely on in vitro studies, they highlight the need to understand the interactions that may affect health. This effect is important because BA levels are increased in several pathophysiological conditions related to liver injuries. Additionally, BA receptors are targeted clinically using therapeutics to treat liver diseases, diabetes, and cancers.  相似文献   

13.
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics. Received 19 October 2008; received after revision 7 November 2008; accepted 11 November 2008 C. L. Salanga, M. O’Hayre: These authors contributed equally.  相似文献   

14.
The discoidin domain receptors (DDRs) are collagen-binding receptor tyrosine kinases that have been implicated in a number of fundamental biological processes ranging from growth and development to immunoregulation. In this review, we examine how recent proteomic technologies have enriched our understanding of DDR signaling mechanisms. We provide an overview on the use of large-scale proteomic profiling and chemical proteomics to reveal novel insights into DDR therapeutics, signaling networks, and receptor crosstalk. A perspective of how proteomics may be harnessed to answer outstanding fundamental questions including the dynamic regulation of receptor activation kinetics is presented. Collectively, these studies present an emerging molecular portrait of these unique receptors and their functional role in health and disease.  相似文献   

15.
Neurotrophins are growth factors implicated in the development and maintenance of different neuronal populations in the nervous system. Neurotrophins bind to two sets of receptors, Trk receptor tyrosine kinases and the p75NTR receptor, to activate several different signaling pathways that mediate various biological functions. While Trk receptor activation has been well-studied and triggers the well-characterized Ras/Rap-MAPK, PI3K-Akt, and PLCgamma-PKC cascades, p75NTR signaling is more complex, and its in vivo significance has not yet been completely determined. In the last few years, p75NTR has received much attention mainly due to recent findings describing pro-neurotrophins as new ligands for the receptor and the ability of the receptor to form different complexes with other transmembrane proteins. This review will update the neurotrophin signaling pathways known for Trk receptors to include newly identified Trk-interacting molecules and will address surprising new findings that suggest a role for p75NTR in different receptor complexes and functions.  相似文献   

16.
Nucleotides are of crucial importance as carriers of energy in all organisms. However, the concept that in addition to their intracellular roles, nucleotides act as extracellular ligands specifically on receptors of the plasma membrane took longer to be accepted. Purinergic signaling exerted by purines and pyrimidines, principally ATP and adenosine, occurs throughout embryologic development in a wide variety of organisms, including amphibians, birds, and mammals. Cellular signaling, mediated by ATP, is present in development at very early stages, e.g., gastrulation of Xenopus and germ layer definition of chick embryo cells. Purinergic receptor expression and functions have been studied in the development of many organs, including the heart, eye, skeletal muscle and the nervous system. In vitro studies with stem cells revealed that purinergic receptors are involved in the processes of proliferation, differentiation, and phenotype determination of differentiated cells. Thus, nucleotides are able to induce various intracellular signaling pathways via crosstalk with other bioactive molecules acting on growth factor and neurotransmitter receptors. Since normal development is disturbed by dysfunction of purinergic signaling in animal models, further studies are needed to elucidate the functions of purinoceptor subtypes in developmental processes.  相似文献   

17.
Receptors for hormones of the hypothalamic-pituitary-gonadal (HPG) axis that regulate reproductive function are expressed throughout the brain, and in particular the limbic system. The most studied of these hormones, the sex steroids, contain receptors throughout the brain, and numerous estrogenic, progestrogenic and androgenic effects have been reported in the brain related to development, maintenance and cognitive functions. Although less studied, receptors for gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and activins also are found throughout the limbic system on a number of cell types, and they too transduce signals from circulating hormones as demonstrated by their multiple effects on the growth, development, maintenance and function of the brain. This review highlights the point that because of the feedback loops within the HPG axis, it is difficult to ascribe structural and functional changes during development, adulthood and senescence to a single HPG hormone, since a change in the concentration of any hormone in the axis will modulate hormone concentrations and/or receptor expression patterns for all other members of the axis. The most studied of these situations is the change in serum and neuronal concentrations of HPG hormones associated with menopause/andropause. Dysregulation of the HPG axis at this time results in increases in the concentrations of serum GnRH, gonadotropins and activins, decreases in the serum concentrations of sex steroid and inhibin, and increases in GnRH and LH receptor expression. Such changes would result in significantly altered neuronal signaling, with the final result being that there is i.e. increased neuronal GnRH, LH and activin signaling, but decreased sex steroid signaling. Therefore, loss of cognitive function during senescence, typically ascribed to sex steroids, may also result from increased signaling via GnRH, LH or activin receptors. Future studies will be required to differentiate which hormones of the HPG axis regulate/maintain cognitive function. This introductory review highlights the importance of the identification of HPG hormone neuronal receptors and the potential of serum HPG hormones to transduce signals to regulate brain structure and function during development and adult life.  相似文献   

18.
Toll-like receptors (TLRs) are a class of pattern recognition receptors sensing microbial components and triggering an immune response against pathogens. In addition to their role in anti-infection immunity, increasing evidence indicates that engagement of TLRs can promote cancer cell survival and proliferation, induce tumor immune evasion, and enhance tumor metastasis and chemoresistance. Recent studies have demonstrated that endogenous molecules or damage-associated molecular patterns released from damaged/necrotic tissues are capable of activating TLRs and that the endogenous ligands-mediated TLR signaling is implicated in the tumor development and affects the therapeutic efficacy of tumors. Since both exogenous and endogenous TLR ligands can initiate TLR signaling, which is the most valuable player in tumor development becomes an interesting question. Here, we summarize the effect of TLR signaling on the development and progression of tumors, and discuss the role of exogenous and endogenous TLR ligands in the tumorigenesis.  相似文献   

19.
Role of Sam68 as an adaptor protein in signal transduction   总被引:3,自引:0,他引:3  
Sam68, the substrate of Src in mitosis, belongs to the family of RNA binding proteins. Sam68 contains consensus sequences to interact with other proteins via specific domains. Thus, Sam68 has various proline-rich sequences to interact with SH3 domain-containing proteins. Moreover, Sam68 also has a C-terminal domain rich in tyrosine residues that is a substrate for tyrosine kinases. Tyrosine phosphorylation of Sam68 promotes its interaction with SH2 containing proteins. The association of Sam68 with SH3 domain-containing proteins, and its tyrosine phosphorylation may negatively regulate its RNA binding activity. The presence of these consensus sequences to interact with different domains allows this protein to participate in signal transduction pathways triggered by tyrosine kinases. Thus, Sam68 participates in the signaling of T cell receptors, leptin and insulin receptors. In these systems Sam68 is tyrosine phosphorylated and recruited to specific signaling complexes. The participation of Sam68 in signaling suggests that it may function as an adaptor molecule, working as a dock to recruit other signaling molecules. Finally, the connection between this role of Sam68 in protein-protein interaction with RNA binding activity may connect signal transduction of tyrosine kinases with the regulation of RNA metabolism.Received 16 July 2004; received after revision 12 August 2004; accepted 18 August 2004  相似文献   

20.
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号