首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 885 毫秒
1.
Summary Possible cellular electrophysiological mechanisms for arrhythmias have been investigated through studies of isolated cardiac tissues. Records through extracellular and intracellular electrodes indicate that arrhythmias may result from either focal or non-focal mechanisms. Focal mechanisms include abnormal impulse initiation (normal or abnormal automaticity), triggering from either early or delayed afterdepolarizations and reflection, whereas the non-focal mechanisms are various forms of reentry due to circus movement. It is reasonable to assume that these mechanisms also occur in vivo. Although it is safe to identify macro-re-entry as the cause of some atrial and ventricular arrhythmias, for the most part direct proof of mechanism usually is lacking for the focal arrhythmias. If on line activation sequence mapping techniques can be developed to quickly and specifically locate arrhythmogenic foci in the in situ heart, it may be possible to use unipolar extracellular recording techniques to identify the exact cellular electrophysiological mechanisms operating within them.  相似文献   

2.
Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.  相似文献   

3.
The biology of cell locomotion within three-dimensional extracellular matrix   总被引:22,自引:0,他引:22  
Cell migration in three-dimensional (3-D) extracellular matrix (ECM) is not a uniform event but rather comprises a modular spectrum of interdependent biophysical and biochemical cell functions. Haptokinetic cell migration across two-dimensional (2-D) surfaces consists of at least three processes: (i) the protrusion of the leading edge for adhesive cell-substratum interactions is followed by (ii) contraction of the cell body and (iii) detachment of the trailing edge. In cells of flattened morphology migrating slowly across 2-D substrate, contact-dependent clustering of adhesion receptors including integrins results in focal contact and stress fiber formation. While haptokinetic migration is predominantly a function of adhesion and deadhesion events lacking spatial barriers towards the advancing cell body, the biophysics of the tissues require a set of cellular strategies to overcome matrix resistance. Matrix barriers force the cells to adapt their morphology and change shape and/or enzymatically degrade ECM components, either by contact-dependent proteolysis or by protease secretion. In 3-D ECM, in contrast to 2-D substrate, the cell shape is mostly bipolar and the cytoskeletal organization is less stringent, frequently lacking discrete focal contacts and stress fibers. Morphologically large spindle-shaped cells (i.e., fibroblasts, endothelial cells, and many tumor cells) of high integrin expression and strong cytoskeletal contractility utilize integrin-dependent migration strategies that are coupled to the capacity to reorganize ECM. In contrast, a more dynamic ameboid migration type employed by smaller cells expressing low levels of integrins (i.e., T lymphocytes, dendritic cells, some tumor cells) is characterized by largely integrin-independent interaction strategies and flexible morphological adaptation to preformed fiber strands, without structurally changing matrix architecture. In tumor invasion and angiogenesis, migration mechanisms further comprise the migration of entire cell clusters or strands maintaining stringent cell-cell adhesion and communication while migrating. Lastly, cellular interactions, enzyme and cytokine secretion, and tissue remodeling provided by reactive stroma cells (i.e. fibroblasts and macrophages) contribute to cell migration. In conclusion, depending on the cellular composition and tissue context of migration, diverse cellular and molecular migration strategies can be developed by different cell types.  相似文献   

4.
Stem and progenitor cells are characterized by their ability to self-renew and produce differentiated progeny. A fine balance between these processes is achieved through controlled asymmetric divisions and is necessary to generate cellular diversity during development and to maintain adult tissue homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor cell pool, or abnormal growth. In many tissues, including the brain, dysregulated asymmetric divisions are associated with cancer. Whether there is a causal relationship between asymmetric cell division defects and cancer initiation is as yet not known. Here, we review the cellular and molecular mechanisms that regulate asymmetric cell divisions in the neural lineage and discuss the potential connections between this regulatory machinery and cancer.  相似文献   

5.
Airway epithelial cell migration is essential for lung development and growth, as well as the maintenance of respiratory tissue integrity. This vital cellular process is also important for the repair and regeneration of damaged airway epithelium. More importantly, several lung diseases characterized by aberrant tissue remodeling result from the improper repair of damaged respiratory tissue. Epithelial cell migration relies upon extracellular matrix molecules and is further regulated by numerous local, neuronal, and hormonal factors. Under inflammatory conditions, cell migration can also be stimulated by certain cytokines and chemokines. Many well-known environmental factors involved in the pathogenesis of chronic lung diseases (e.g., cigarette smoking, air pollution, alcohol intake, inflammation, viral and bacterial infections) can inhibit airway epithelial cell migration. Further investigation of cellular and molecular mechanisms of cell migration with advanced techniques may provide knowledge that is relevant to physiological and pathological conditions. These studies may eventually lead to the development of therapeutic interventions to improve lung repair and regeneration and to prevent aberrant remodeling in the lung.  相似文献   

6.
The melastatin-related transient receptor potential member 7 (TRPM7) is a unique fusion protein with both ion channel function and enzymatic α-kinase activity. TRPM7 is essential for cellular systemic magnesium homeostasis and early embryogenesis; it promotes calcium transport during global brain ischemia and emerges as a key player in cancer growth. TRPM7 channels are negatively regulated through G-protein-coupled receptor-stimulation, either by reducing cellular cyclic adenosine monophosphate (cAMP) or depleting phosphatidylinositol bisphosphate (PIP2) levels in the plasma membrane. We here identify that heterologous overexpression of human TRPM7-K1648R mutant will lead to disruption of protease or purinergic receptor-induced calcium release. The disruption occurs at the level of Gq, which requires intact TRPM7 kinase phosphorylation activity for orderly downstream signal transduction to activate phospholipase (PLC)β and cause calcium release. We propose that this mechanism may support limiting GPCR-mediated calcium signaling in times of insufficient cellular ATP supply.  相似文献   

7.
Cell cycle progression is regulated by both intracellular and extracellular control mechanisms. Intracellular controls ensure that cell cycle progression is stopped in response to irregularities such as DNA damage or faulty spindle assembly, whereas extracellular factors may determine cell fate such as differentiation, proliferation or programmed cell death (apoptosis). When extracellular factors bind to receptors at the outside of the cell, signal transduction cascades are activated inside the cell that eventually lead to cellular responses. We have shown previously that MAP kinase (MAPK), one of the proteins involved in several signal transduction processes, is phosphorylated early after mitosis and translocates to the nucleus around the restriction point. The activation of MAPK is independent of cell attachment, but does require the presence of growth factors. Moreover, it appears that in Chinese hamster ovary cells, a transformed cell line, growth factors must be present early in the G1 phase for a nuclear translocation of MAPK and subsequent DNA replication to occur. When growth factors are withdrawn from the medium immediately after mitosis, MAPK is not phosphorylated, cell cycle progression is stopped and cells appear to enter a quiescent state, which may lead to apoptosis. Furthermore, in addition to this growth-factor-regulated decision point in early G1 phase, another growth-factor-sensitive period can be distinguished at the end of the G1 phase. This period is suggested to correlate with the classical restriction point (R) and may be related to cell differentiation.  相似文献   

8.
Focal adhesions are cellular structures through which both mechanical forces and regulatory signals are transmitted. Two focal adhesion-associated proteins, Crk-associated substrate (CAS) and vinculin, were both independently shown to be crucial for the ability of cells to transmit mechanical forces and to regulate cytoskeletal tension. Here, we identify a novel, direct binding interaction between CAS and vinculin. This interaction is mediated by the CAS SRC homology 3 domain and a proline-rich sequence in the hinge region of vinculin. We show that CAS localization in focal adhesions is partially dependent on vinculin, and that CAS–vinculin coupling is required for stretch-induced activation of CAS at the Y410 phosphorylation site. Moreover, CAS–vinculin binding significantly affects the dynamics of CAS and vinculin within focal adhesions as well as the size of focal adhesions. Finally, disruption of CAS binding to vinculin reduces cell stiffness and traction force generation. Taken together, these findings strongly implicate a crucial role of CAS–vinculin interaction in mechanosensing and focal adhesion dynamics.  相似文献   

9.
The plasminogen activation system in tumor growth, invasion, and metastasis   总被引:61,自引:0,他引:61  
Generation of the serine proteinase plasmin from the extracellular zymogen plasminogen can be catalyzed by either of two other serine proteinases, the urokinase- and tissue-type plasminogen activators (uPA and tPA). The plasminogen activation system also includes the serpins PAI-1 and PAI-2, and the uPA receptor (uPAR). Many findings, gathered over several decades, strongly suggest an important and causal role for uPA-catalyzed plasmin generation in cancer cell invasion through the extracellular matrix. Recent evidence suggests that the uPA system is also involved in cancer cell-directed tissue remodeling. Moreover, the system also supports cell migration and invasion by plasmin-independent mechanisms, including multiple interactions between uPA, uPAR, PAI-1, extracellular matrix proteins, integrins, endocytosis receptors, and growth factors. These interactions seem to allow temporal and spatial reorganizations of the system during cell migration and a selective degradation of extracellular matrix proteins during invasion. The increased knowledge about the plasminogen activation system may allow utilization of its components as targets for anti-invasive therapy.  相似文献   

10.
Memory   总被引:2,自引:0,他引:2  
In this review we address the idea that conservation of epigenetic mechanisms for information storage represents a unifying model in biology, with epigenetic mechanisms being utilized for cellular memory at levels from behavioral memory to development to cellular differentiation. Epigenetic mechanisms typically involve alterations in chromatin structure, which in turn regulate gene expression. An emerging idea is that the regulation of chromatin structure through histone acetylation and DNA methylation may mediate long-lasting behavioral change in the context of learning and memory. We find this idea fascinating because similar mechanisms are used for triggering and storing long-term 'memory' at the cellular level, for example when cells differentiate. An additional intriguing aspect of the hypothesis of a role for epigenetic mechanisms in information storage is that lifelong behavioral memory storage may involve lasting changes in the physical, three-dimensional structure of DNA itself.  相似文献   

11.
In highly polarized and elongated cells such as neurons, Tau protein must enter and move down the axon to fulfill its biological task of stabilizing axonal microtubules. Therefore, cellular systems for distributing Tau molecules are needed. This review discusses different mechanisms that have been proposed to contribute to the dispersion of Tau molecules in neurons. They include (1) directed transport along microtubules as cargo of tubulin complexes and/or motor proteins, (2) diffusion, either through the cytosolic space or along microtubules, and (3) mRNA-based mechanisms such as transport of Tau mRNA into axons and local translation. Diffusion along the microtubule lattice or through the cytosol appear to be the major mechanisms for axonal distribution of Tau protein in the short-to-intermediate range over distances of up to a millimetre. The high diffusion coefficients ensure that Tau can distribute evenly throughout the axonal volume as well as along microtubules. Motor protein-dependent transport of Tau dominates over longer distances and time scales. At low near-physiological levels, Tau is co-transported along with short microtubules from cell bodies into axons by cytoplasmic dynein and kinesin family members at rates of slow axonal transport.  相似文献   

12.
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.  相似文献   

13.
Long-term potentiation (LTP) and long-term depression (LTD) are two electrophysiological models that have been studied extensively in recent years as they may represent basic mechanisms in many neuronal networks to store certain types of information. In several brain regions, it has been shown that these two forms of synaptic plasticity require sufficient dendritic depolarization, with the amplitude of the calcium signal being crucial for the generation of either LTP or LTD. The rise in calcium concentration mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent enzymatic processes that could convert the induction signal into long-lasting changes in synaptic structure; protein kinases and phosphatases have so far been considered predominantly with regard to LTP and LTD formation. According to several lines of experimental evidence, changes in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. Moreover, it has become apparent recently that activation of the calcium-dependent enzyme phospholipase A2 (PLA2) could be part of the molecular mechanisms involved in alterations of AMPA receptor properties during long-term changes in synaptic operation. In the present review, we will first describe the results that indicate a critical role of the phospholipases in regulating synaptic function. Next, sections will be devoted to the effects of PLA2 and phospholipids on the binding properties of glutamate receptors, and a revised biochemical model will be presented as an attempt to integrate the PLA2 enzyme into the mechanisms ( in particular kinases and phosphatases) that participate in adaptive neural plasticity. Finally, we will review data relevant to the issue of selective changes in AMPA binding after environmental enrichment and LTP.  相似文献   

14.
疼痛的神经生物学--理解大脑机制及神经疾病治疗的机理   总被引:5,自引:0,他引:5  
中枢神经系统的神经元和突触具有可塑性,他们能够发生贯穿整个生命过程的长时程改变。研究这种长时程变化的分子和细胞学机制,不仅可以帮助我们了解大脑如何学习和储存新的知识,而且还可以揭示机体损伤后病理变化的机制。我认为,一方面学习和记忆等生理学功能的神经机制可能与大脑在疼痛期间的反常或机体损伤相关的变化过程共用一些信号分子;另一方面,一些不参与认知学习和记忆过程的突触和神经元网络机制也可能与疼痛的病理过程相关。伤害性感受可以从脊髓传递到前脑并在不同水平受到调节。其中,前扣带脑皮质(anterior cingulate cortex,ACC)在痛觉的感受和调节中具有重要作用。我们的实验结果表明,ACC中的N-甲基-D-门冬氨酸(NMDA)受体依赖的、钙/钙调蛋白激活的腺苷酸环化酶(adenylyl cyclases,AC)(ACl和ACB)在慢性痛的表达过程中起着重要的作用。ACC还可以通过激活内源性易化系统影响脊髓背角的痛觉信号传递。这些结果为机体对损伤的生理反应如痛行为反应、情绪变化和不良记忆等提供了重要的突触和分子水平的机制。加强对疼痛机制研究,会带动中国的神经科学的基础和临床研究。  相似文献   

15.
Many methods have been developed to analyse protein sequences and structures, although less work has been undertaken describing and comparing protein surfaces. Evolution can lead sequences to diverge or structures to change topology; nevertheless, surface determinants that are essential to protein function itself may be mantained. Moreover, different molecules could converge to similar functions by gaining specific surface determinants. In such cases, sequence or structure comparisons are likely to be inadequate in describing or identifying protein functions and evolutionary relationships among proteins. Surface analysis can identify function determinants that are independent of sequence or secondary structure and can therefore be a powerful tool to highlight cases of possible convergent or divergent evolution. This kind of approach can be useful for a better understanding of protein molecular and biochemical mechanisms of catalysis or interaction with a ligand, which are usually surface dependent. Protein surface comparison, when compared to sequence or structure comparison methods, is a hard computational challenge and evaluated methods allowing the comparison of protein surfaces are difficult to find. In this review, we will survey the current knowledge about protein surface similarity and the techniques to detect it.  相似文献   

16.
Integrin-mediated signal transduction   总被引:23,自引:0,他引:23  
Integrins, expressed on virtually every cell type, are proteins that mediate cellular interactions with components of the extracellular matrix (ECM) and cell surface integral plasma membrane proteins. In addition, integrins interact with the cytoskeleton and through this process participate in cell migration, tissue organization, cell growth, haemostasis, inflammation, target recognition of lymphocytes and the differentiation of many cell types. Signals generated from ligand-integrin interactions are propagated via the integrin cytoplasmic tails to signal transduction pathways within the cell (outside-in signalling). Information from within the cell can also be transmitted to the outside via integrin affinity modulation (inside-out signalling). Protein tyrosine phosphorylation has a central role in integrin-initiated cell signalling, leading to cytoskeletal organization and focal adhesion formation. This review will examine the current understanding of integrin function, focusing on the intracellular consequences of integrin-ligand interaction.  相似文献   

17.
Cartilage oligomeric matrix protein, also known as thrombospondin-5 (TSP-5), is an extracellular matrix protein found primarily in cartilage and musculoskeletal tissues. TSP-5 is of interest because mutations in the gene cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED/EDM1). Both PSACH and EDM1 have a characteristic chondrocyte phenotype distinguished by giant rough endoplasmic reticulum (rER) cisternae containing TSP-5 and other extracellular matrix proteins such as type IX collagen and matrilin-3. The accumulation of proteinaceous material in the rER compromises cellular function and leads to premature chondrocyte death. Both in vitro and in vivo models have been generated with varying degrees of success to study the cellular mechanisms of the disease process. Here we review and discuss in vitro and in vivo PSACH and MED model systems and describe two transgenic mouse lines expressing human mutant TSP-5 protein. These model systems have revealed several important features of the PSACH cellular pathology: unfolded protein response activation, upregulation of apoptosis and inappropriate assembly of matrix network in the rER. Some of these models are valuable reagents that may be of use in testing therapeutic interventions. (Part of a Multiauthor Review).  相似文献   

18.
19.
C J Duncan 《Experientia》1990,46(1):41-48
The O2- and Ca2(+)-paradoxes have a number of features in common and it is suggested that release of cytosolic proteins in both paradoxes is initiated by the activation of a sarcolemma NAD(P)H dehydrogenase which can generate a transmembrane flow of H+ and e- and also oxygen radicals or redox cycling which damage ion channels and membrane proteins (phase I). Entry of Ca2+ through the damaged ion channels then exacerbates the damage by further activating this system, either directly or indirectly, and the redox cycling and/or oxygen radicals cause further damage to integral and cytoskeletal proteins of the sarcolemma resulting in microdamage to the integrity of the membrane (phase II) and the consequent release or exocytosis of cytoplasmic proteins and, under specialised conditions, the blebbing of the sarcolemma. The system may be primed either by removal of extracellular Ca2+ or by raising [Ca2+]i by a variety of measures, these two actions being synergistic. The system is initially activated in the Ca2(+)-paradox by the membrane perturbation associated with removal of extracellular Ca2+; prolonged anoxia in the metabolically active cardiac muscle causes a depletion of the ATP supply, particularly in the absence of glucose, and hence a rise in [Ca2+]i in phase I of the oxygen paradox with the consequent activation of the NAD(P)H oxidase at the sarcolemma. Oxygen radicals are probably generated in both paradoxes and may have a partial role in the genesis of damage, but are not essential in the Ca2(+)-paradox which continues under anoxia. Massive entry of Ca2+ also activates an intracellularly localised dehydrogenase (probably at the SR) which produces myofilament damage by redox cycling.  相似文献   

20.
Fas, also known as CD95 or APO-1, is a member of the tumor necrosis factor/nerve growth factor superfamily. Although best characterized in terms of its apoptotic function, recent studies have identified several other cellular responses emanating from Fas. These responses include migration, invasion, inflammation, and proliferation. In this review, we focus on the diverse cellular outcomes of Fas signaling and the molecular switches identified to date that regulate its pro- and anti-apoptotic functions. Such switches occur at different levels of signal transduction, ranging from the receptor through to cross-talk with other signaling pathways. Factors identified to date including other extracellular signals, proteins recruited to the death-inducing signaling complex, and the availability of different intracellular components of signal transduction pathways. The success of therapeutically targeting Fas will require a better understanding of these pathways, as well as the regulatory mechanisms that determine cellular outcome following receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号