首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
针对传统非线性时频分析方法在跳频(frequency hopping, FH)信号参数估计时,会出现严重的交叉项和参数估计精度降低等问题,引入径向高斯核(radially Gaussian kernel,RGK)时频分析方法,该方法根据FH信号的不同自适应选择最优核函数,从而有效抑制交叉项。RGK时频分析方法可在高斯噪声环境下估计FH信号的参数,但在脉冲性较强的α稳定分布噪声中,该方法性能退化甚至失效。对此,结合最大似然估计理论,提出了一种α稳定分布噪声环境下的加权最大似然广义柯西(weighted maximum likelihood generalized Cauchy,WMGC)滤波的新方法。采用基于WMGC滤波器的RGK时频分析方法(WMGC RGK方法,即WR方法),对该噪声中的跳频信号进行参数估计。仿真结果表明,与基于分数低阶及Myriad的时频分析方法相比,WR方法在α稳定分布噪声中具有良好的鲁棒性和优良的跳频信号参数估计性能。  相似文献   

2.
为解决复杂电磁环境下跳频(frequency hopping, FH)参数的盲估计问题,提出了基于时频方差聚类的算法。考虑在低信噪比(signal-to-noise ratio, SNR)和定频干扰同时存在的情况下,通过短时傅里叶变换(short time Fourier transform, STFT)将信号变换到时频域,利用遗传算法对信号的时频区间进行提取,根据时频方差对其进行k-means聚类,消除噪声和定频干扰并提取时频脊线,然后运用Haar小波对该时频脊线进行奇异点检测,进而估计出FH信号的FH周期、跳速和FH频率等参数。仿真结果表明,所提算法在SNR低于-5 dB且存在定频干扰的情况下,能够实现对FH参数的精确估计,参数估计正确概率达到90%以上。  相似文献   

3.
针对传统维格纳霍夫变换(Wigner-Ville Hough transform, WHT) 时频分析方法在稳定分布噪声环境下性能退化的问题,基于L-估计理论,提出了可有效抑制该噪声的最优L 柯西加权(L-Cauchy weighted, LCW)新方法。3En准则是一种常用的异常值剔除方法,其可从数理统计的角度对异常值进行有效抑制,对此,结合柯西分布提出了基于分散系数的异常值剔除准则,并依据数值仿真选取降噪效果最优的分散系数γ。在LCW方法有效抑制α稳定分布噪声的基础上,采用WHT对线性调频(linear frequency modulation, LFM)信号进行参数估计。仿真结果表明,最优γ值的选取与该文提出的异常值剔除准则一致,且与基于分数低阶、加权Myriad滤波以及L-估计等多种方法相比,提出的基于LCW的WHT(LCW-WHT,LW)方法在强脉冲噪声下具有良好的鲁棒性和优良的LFM信号参数估计性能。  相似文献   

4.
针对传统的正交频分复用(orthogonal frequency division multiplexing,OFDM)时域参数估计方法在Alpha稳定分布噪声环境下性能退化的问题,该文提出了一种基于相关熵的时域参数估计新方法。相关熵是适用于非高斯信号处理的一种广义相关函数,用于表征随机变量的局部相似性。该方法利用OFDM信号时域结构具有局部相似性这一特点以及相关熵对脉冲噪声较好的抑制作用,完成Alpha稳定分布噪声下OFDM信号有用符号时间和符号周期这两个时域参数的估计。此外,为进一步提高强脉冲噪声下有用符号时间和符号周期的估计性能,该文利用累积法对相关熵进行了改进。仿真结果表明,在Alpha稳定分布噪声下,本文提出的基于相关熵的方法具有良好的估计性能,并且在强脉冲噪声下优于基于分数低阶统计量的方法。  相似文献   

5.
基于空时频分析的多分量跳频信号DOA估计   总被引:1,自引:0,他引:1  
提出了一种基于空时频分析的多跳频信号波达方向(direction of arrival, DOA)估计方法。该方法能够在欠定条件下(传感器数目小于信号数目)实现多个信号的测向。首先将信号的短时傅里叶变换(short time Fourier transform, STFT)与平滑伪魏格纳-威利分布(smoothed pseudo Wigner-Ville distribution, SPWVD)组合,利用STFT的无交叉项和SPWVD的时频聚焦性性能,得到了一种切实可行、时频图清晰稳健的分布;然后在时频域提取有效跳(hop),并建立该hop的空时频矩阵,最后分别运用线性空时频、二次空时频和root-MUSIC共三种方法估计每hop信号的DOA。仿真结果验证了方法的有效性。  相似文献   

6.
分析了现有跳频信号稀疏重构算法的基不匹配问题,导致离散字典的稀疏表示能力变差,严重影响稀疏重构算法的性能。针对这种情形,提出了基于自适应网格的变分贝叶斯稀疏重构算法。该方法通过对字典不断地加权聚类和缩放处理,实现字典的自我更新,使得参数网格更加精细化。仿真结果表明,该方法具有良好的抗噪性能和交叉项抑制能力,同时缓解了稀疏重构算法的基不匹配情形,时频聚焦性进一步提高,能够在较低信噪比条件下,获取较高时频分辨率的时频矩阵,可以更精确地完成后续跳时刻检测、跳周期及跳频率等参数估计。  相似文献   

7.
基于时频分布的跳频信号盲分离方法   总被引:1,自引:0,他引:1  
根据跳频信号的非平稳特性,提出一种基于时频分布的跳频信号盲分离方法。该方法利用不同源信号时频特征的差异,通过对混合信号的一组时频分布矩阵联合近似对角化来实现信号的盲分离。理论分析和仿真结果表明,这种方法在未知任何先验参数的情况下,能够有效分离多个跳频网台,而且具有较强的噪声抑制能力。  相似文献   

8.
跳频信号载频随时间变化发生跳变, 因此跳频信号具有丰富的频域信息,而且其在时域上为连续信号, 相比单跳信号也具有更丰富的时域信息。时频差估计精度与信号在时频域上的分布情况以及信号能量和噪声有关。时差估计主要与信号频域分布有关, 而频差估计主要与信号时域分布有关。跳频信号时频域信息丰富, 多跳相参积累后, 时频差参数估计能够充分利用信号的时频域信息, 克服单跳信号时频差估计精度不高的问题。针对跳频信号的时频差估计问题, 首先分析了单跳基带信号的互模糊函数, 再从时差与频差的维度推导了多跳基带信号互模糊函数的相位差异, 最后通过频差归一化与相位对齐补偿提出了多跳信号互模糊函数相参积累的时频差估计算法。同时, 在不满足相参积累的条件下, 分析了跳频信号的非相参时频差估计方法, 并理论分析了两种跳频信号时频差参数估计方法性能与信号各参数的关系。仿真结果表明跳频信号相参时频差估计算法性能最优, 非相参方法的估计性能其次, 单跳信号的估计性能最差, 验证了理论性能分析结果的正确性。  相似文献   

9.
郭业才  许芳  龚溪 《系统仿真学报》2012,24(11):2344-2348
对于服从分数低阶Alpha稳定分布的非高斯信号,其二阶和高阶统计量都是不存在的。当环境噪声为这种噪声时,基于高阶统计量的常数模盲均衡算法(CMA)的均衡性能很差。为了克服环境噪声服从分数低阶Alpha稳定分布时,CMA的性能缺陷,提出了一种基于分数低阶统计量的正交小波盲均衡算法。该算法利用分数低阶统计量来抑制Alpha稳定噪声,根据最小分散系数准则优化盲均衡算法的权向量,并对均衡器输入信号进行正交小波变换,通过降低均衡器输入信号的自相关性来加快收敛速度。水声信道仿真结果表明,该算法性能明显优于CMA。  相似文献   

10.
基于RSPWVD高速跳频信号跳周期估计算法   总被引:2,自引:0,他引:2  
针对跳频通信进行有效干扰的关键在于对跳频信号参数进行精确的估计,提出了一种基于重分配平滑伪魏格纳维尔分布(reassigned smoothed pseudo Wigner-Ville distribution,RSPWVD)的高速跳频信号跳周期估计算法。该算法利用了RSPWVD良好的时频聚集性和抑制交叉项的能力,能够有效地估计出跳频信号的跳周期参数(hop duration)。仿真实验结果表明了该算法的准确性与有效性。  相似文献   

11.
为了利用跳频信号的空域特征参数辅助多跳频信号的网台分选,在空时频分析的基础上,提出一种基于多重信号分类(multiple signal classification, MUSIC)对称压缩谱(MUSIC symmetrical compressed spectrum, MSCS)的多跳频信号二维波达方向(two dimensional direction of arrival, 2D-DOA)高效估计算法。首先根据跳频信号的时频域特征,构建每一跳的空时频矩阵(spatial time frequency distribution, STFD),获取时频域的协方差矩阵;然后将共轭子空间的思想引入到MUSIC算法中,通过对噪声子空间及其共轭的交集进行奇异值分解,实现噪声子空间的降维;最终通过半谱搜索实现2D-DOA的高效估计。同时为了提高低信噪比条件下算法的性能,在时频图处理过程中采用形态学滤波进行去噪,并在修正的时频图上完成了跳频信号每一跳的提取。通过理论论证和实验仿真表明,本文算法相比于MUSIC算法,在保证均方根误差相当和估计成功率有所提高的情况下,计算复杂度降低了一半。  相似文献   

12.
The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.  相似文献   

13.
基于小波变换的Power-Law水声瞬态信号检测研究   总被引:2,自引:0,他引:2  
水声瞬态信号检测是水声对抗领域的一项关键技术.在分析了传统的Power-Law检测器的基础上,针对水声瞬态信号的特点,提出了一种基于小波去噪的检测方法.该方法利用小波去噪理论抑制信号中的杂散成分,提高信噪比,然后利用Power-Law检测器进行检测.对三种典型水声瞬态信号的仿真结果表明该方法可以在低信噪比条件下有效分辨信号和噪声,检测效果优于传统的Power-Law检测方法.  相似文献   

14.
根据跳频信号与部分频带噪声阻塞干扰信号的近似统计独立性,提出一种基于盲源分离的跳频通信对抗部分频带噪声阻塞干扰方法。所提方法利用分离信号的二阶或高阶统计量构建目标函数引导分离矩阵迭代,实现跳频信号与部分频带噪声阻塞干扰信号的有效分离,从而提高跳频通信的抗干扰能力。仿真结果表明,所提方法可明显改善跳频通信在部分频带噪声阻塞干扰下的误码率性能,而且分离算法的处理时延很小,有望满足跳频通信的实际需求。  相似文献   

15.
微动信号是典型的非平稳信号, 时频分析能够获得微动信号的联合时间-频率分布图像, 是微动信号分析的主要工具之一, 良好的时频图像质量能保证后续特征提取和参数估计的准确性。然而在实际场景中, 时频图像通常受到噪声污染, 使得微动信号难以分辨, 严重制约了后续特征提取和参数估计。根据显著性检测和图像金字塔的基本原理, 本文在多分辨率表示图像上分别计算显著性并滤波, 最后进行加权融合获得增强的时频图像, 有效抑制了噪声, 提升了低信噪比(signal to noise ratio, SNR)下时频图像的质量和微动信号的显著性。实验结果表明, 对于仿真信号以及暗室测量信号, 在-7~7 dB SNR下, 采用该方法均能显著提升时频图像质量, 且-3 dB以下时能大幅提高周期估计的准确率, 是一种有效的微动信号增强方法。  相似文献   

16.
针对传统方法对阵列信号处理所研究的噪声采用高斯分布的模型来进行描述,当噪声存在显著的尖峰时,不能得到满意结果的问题。利用稳定分布对实际中所遇到的具有较大脉冲特性的随机噪声进行建模,分析了共变在阵列信号处理中的不足,利用已有的矢量水听器模型建立一种水下目标定向系统,提出了一种基于分数阶相关的水下目标定向算法。仿真表明这种算法是一种在高斯和分数低阶α-稳定分布噪声条件下具有良好韧性的水下目标定向算法,相对共变而言,分数阶相关具有更宽的噪声特征指数范围,更适用于实际应用。  相似文献   

17.
针对随机值脉冲噪声,提出了噪声边界检测的规则函数滤波方法。该方法由噪声检测器与图像滤波器两部分构成。在噪声检测部分,由像素二阶差对各个子窗口像素进行像素边界值检测,进而对所有子窗口边界值进行全局统计确定图像噪声像素边界,并利用同类像素个数对噪声边界内的像素进行纠正以降低错检率。针对噪声像素,利用图像规则函数和噪声像素限制条件来构造规则函数滤波器。将所提出的方法应用于噪声像素检测与滤波,并与其他算法对比,实验结果表明,该方法能够同时保证低漏检率和错检率;在滤波方面,该方法所得到的修复图像具有更高的峰值信噪比和视觉效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号