首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the baryons in galaxy clusters reside between the galaxies in a hot, tenuous gas. The densest gas in their centres should cool and accrete onto giant central galaxies at rates of 10-1,000 solar masses per year. No viable repository for this gas, such as clouds or new stars, has been found. New X-ray observations, however, have revealed far less cooling below X-ray temperatures than expected, altering the previously accepted picture of cooling flows. As a result, most of the gas must be heated to and maintained at temperatures above approximately 2 keV (ref. 3). The most promising heating mechanism is powerful radio jets emanating from supermassive black holes in the central galaxies of clusters. Here we report the discovery of giant cavities and shock fronts in a distant (z = 0.22) cluster caused by an interaction between a radio source and the hot gas surrounding it. The energy involved is approximately 6 x 10(61) erg, the most powerful radio outburst known. This is enough energy to quench a cooling flow for several Gyr, and to provide approximately 1/3 keV per particle of heat to the surrounding cluster.  相似文献   

2.
Zarka P  Lamy L  Cecconi B  Prangé R  Rucker HO 《Nature》2007,450(7167):265-267
The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead. Saturn, despite an apparently axisymmetric magnetic field, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 +/- 7 s, and this has been adopted as Saturn's rotation period. Subsequent observations, however, revealed that this period varies by +/-6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by +/-1% with a characteristic timescale of 20-30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn's radio clock is controlled, at least in part, by conditions external to the planet's magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind.  相似文献   

3.
The energy source driving Jupiter's active meteorology is not understood. There are two main candidates: a poorly understood internal heat source and sunlight. Here we report observations of an active storm system possessing both lightning and condensation of water. The storm has a vertical extent of at least 50 km and a length of about 4,000 km. Previous observations of lightning on Jupiter have revealed both its frequency of occurrence and its spatial distribution, but they did not permit analysis of the detailed cloud structure and its dynamics. The present observations reveal the storm (on the day side of the planet) at the same location and within just a few hours of a lightning detection (on the night side). We estimate that the total vertical transport of heat by storms like the one observed here is of the same order as the planet's internal heat source. We therefore conclude that moist convection-similar to large clusters of thunderstorm cells on the Earth-is a dominant factor in converting heat flow into kinetic energy in the jovian atmosphere.  相似文献   

4.
Holmström M  Ekenbäck A  Selsis F  Penz T  Lammer H  Wurz P 《Nature》2008,451(7181):970-972
Absorption in the stellar Lyman-alpha (Lyalpha) line observed during the transit of the extrasolar planet HD 209458b in front of its host star reveals high-velocity atomic hydrogen at great distances from the planet. This has been interpreted as hydrogen atoms escaping from the planet's exosphere, possibly undergoing hydrodynamic blow-off, and being accelerated by stellar radiation pressure. Energetic neutral atoms around Solar System planets have been observed to form from charge exchange between solar wind protons and neutral hydrogen from the planetary exospheres, however, and this process also should occur around extrasolar planets. Here we show that the measured transit-associated Lyalpha absorption can be explained by the interaction between the exosphere of HD 209458b and the stellar wind, and that radiation pressure alone cannot explain the observations. As the stellar wind protons are the source of the observed energetic neutral atoms, this provides a way of probing stellar wind conditions, and our model suggests a slow and hot stellar wind near HD 209458b at the time of the observations.  相似文献   

5.
Venus as a more Earth-like planet   总被引:1,自引:0,他引:1  
Svedhem H  Titov DV  Taylor FW  Witasse O 《Nature》2007,450(7170):629-632
Venus is Earth's near twin in mass and radius, and our nearest planetary neighbour, yet conditions there are very different in many respects. Its atmosphere, mostly composed of carbon dioxide, has a surface temperature and pressure far higher than those of Earth. Only traces of water are found, although it is likely that there was much more present in the past, possibly forming Earth-like oceans. Here we discuss how the first year of observations by Venus Express brings into focus the evolutionary paths by which the climates of two similar planets diverged from common beginnings to such extremes. These include a CO2-driven greenhouse effect, erosion of the atmosphere by solar particles and radiation, surface-atmosphere interactions, and atmospheric circulation regimes defined by differing planetary rotation rates.  相似文献   

6.
Planets that orbit their parent star at less than about one astronomical unit (1?AU is the Earth-Sun distance) are expected to be engulfed when the star becomes a red giant. Previous observations have revealed the existence of post-red-giant host stars with giant planets orbiting as close as 0.116?AU or with brown dwarf companions in tight orbits, showing that these bodies can survive engulfment. What has remained unclear is whether planets can be dragged deeper into the red-giant envelope without being disrupted and whether the evolution of the parent star itself could be affected. Here we report the presence of two nearly Earth-sized bodies orbiting the post-red-giant, hot B subdwarf star KIC 05807616 at distances of 0.0060 and 0.0076?AU, with orbital periods of 5.7625 and 8.2293 hours, respectively. These bodies probably survived deep immersion in the former red-giant envelope. They may be the dense cores of evaporated giant planets that were transported closer to the star during the engulfment and triggered the mass loss necessary for the formation of the hot B subdwarf, which might also explain how some stars of this type did not form in binary systems.  相似文献   

7.
A low mass for Mars from Jupiter's early gas-driven migration   总被引:1,自引:0,他引:1  
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ~100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.  相似文献   

8.
L F Miranda  Y Gómez  G Anglada  J M Torrelles 《Nature》2001,414(6861):284-286
A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.  相似文献   

9.
青藏高原热状况特征分析   总被引:5,自引:0,他引:5  
利用中日亚洲季风机制合作研究计划中的青藏高原自动气象站(AWS)观测资料和相应的常规测站资料,计算分析了拉萨、日喀则、那曲和林芝的大气热量收支及各热力分量的贡献状况,结果表明:高原大气在3-9月热源,10-2月是冷源;各热力分量都存在夏大冬小的现象,来自太阳的短波辐射和地表净辐射各占总供热40%;湍流感热和降水潜热各占供热约10%;辐射加热是高原大气热量的主要来源。  相似文献   

10.
In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.  相似文献   

11.
Owen T  Mahaffy P  Niemann HB  Atreya S  Donahue T  Bar-Nun A  de Pater I 《Nature》1999,402(6759):269-270
The four giant planets in the Solar System have abundances of 'metals' (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.  相似文献   

12.
Nagashima K  Krot AN  Yurimoto H 《Nature》2004,428(6986):921-924
Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula.  相似文献   

13.
De Pontieu B  Erdélyi R  James SP 《Nature》2004,430(6999):536-539
Spicules are dynamic jets propelled upwards (at speeds of approximately 20 km s(-1)) from the solar 'surface' (photosphere) into the magnetized low atmosphere of the Sun. They carry a mass flux of 100 times that of the solar wind into the low solar corona. With diameters close to observational limits (< 500 km), spicules have been largely unexplained since their discovery in 1877: none of the existing models can account simultaneously for their ubiquity, evolution, energetics and recently discovered periodicity. Here we report a synthesis of modelling and high-spatial-resolution observations in which numerical simulations driven by observed photospheric velocities directly reproduce the observed occurrence and properties of individual spicules. Photospheric velocities are dominated by convective granulation (which has been considered before for spicule formation) and by p-modes (which are solar global resonant acoustic oscillations visible in the photosphere as quasi-sinusoidal velocity and intensity pulsations). We show that the previously ignored p-modes are crucial: on inclined magnetic flux tubes, the p-modes leak sufficient energy from the global resonant cavity into the chromosphere to power shocks that drive upward flows and form spicules.  相似文献   

14.
The atmospheres of the giant planets Jupiter and Saturn have a puzzling system of zonal (east-west) winds alternating in latitude, with the broad and intense equatorial jets on Saturn having been observed previously to reach a velocity of about 470 m x s(-1) at cloud level. Globally, the location and intensity of Jupiter's jets are stable in time to within about ten per cent, but little is known about the stability of Saturn's jet system. The long-term behaviour of these winds is an important discriminator between models for giant-planet circulations. Here we report that Saturn's winds show a large drop in the velocity of the equatorial jet of about 200 m x s(-1) from 1996 to 2002. By contrast, the other measured jets (primarily in the southern hemisphere) appear stable when compared to the Voyager wind profile of 1980-81.  相似文献   

15.
星系簇的中心附近有个大的椭圆,团簇的中心的椭圆星系经常被认为是传向河外的大尺度喷流的源,这些喷流被认为是在大椭圆中心里AGN中幂律吸积过程生成的,本文中我们要讨论喷流的起源及它们与河外星系团际介质的相互作用的可能结果.  相似文献   

16.
Marois C  Zuckerman B  Konopacky QM  Macintosh B  Barman T 《Nature》2010,468(7327):1080-1083
High-contrast near-infrared imaging of the nearby star HR 8799 has shown three giant planets. Such images were possible because of the wide orbits (>25?astronomical units, where 1?au is the Earth-Sun distance) and youth (<100?Myr) of the imaged planets, which are still hot and bright as they radiate away gravitational energy acquired during their formation. An important area of contention in the exoplanet community is whether outer planets (>10?au) more massive than Jupiter form by way of one-step gravitational instabilities or, rather, through a two-step process involving accretion of a core followed by accumulation of a massive outer envelope composed primarily of hydrogen and helium. Here we report the presence of a fourth planet, interior to and of about the same mass as the other three. The system, with this additional planet, represents a challenge for current planet formation models as none of them can explain the in situ formation of all four planets. With its four young giant planets and known cold/warm debris belts, the HR 8799 planetary system is a unique laboratory in which to study the formation and evolution of giant planets at wide (>10?au) separations.  相似文献   

17.
寒区沥青路面的合理设计温度   总被引:6,自引:0,他引:6  
针对目前寒区沥青路面设计温度的不合理性以及美国公路战略研究计划(SHRP)规定的局限性,结合辽宁省各地区的路面实测温度及其历年的气象资料,综合考虑了影响路面温度的内部主要因素(导热系数、热传递方式)和外部主要因素(气温、太阳总辐射、风速),对寒区沥青路面设计温度进行数值仿真,用数理统计方法研究气温和路面温度的回归关系,给出了沥青路面的高温设计温度和低温设计温度的计算公式。经验证,沥青路面的高温设计温度和低温设计温度计算公式符合统计规律,准确合理。  相似文献   

18.
本文分析了不同轨道高度以及同一轨道高度不同位置,空间薄膜充气管所受太阳辐射压力及其扭矩大小,以及所受外热流情况.研究发现影响空间薄膜充气管的太阳辐射压力及其产生的扭矩与轨道高度无关,但随轨道位置变化而变化;外热流是轨道高度和位置的函数:随着高度的增加,太阳直接辐射热流不发生变化,但在所有外热流中其数值最大,地球红外辐射热流和地球反照热流则随着轨道的增加而下降,且后者下降的速度更快.  相似文献   

19.
Vlemmings WH  Diamond PJ  Imai H 《Nature》2006,440(7080):58-60
Planetary nebulae often have asymmetric shapes, even though their progenitor stars were symmetric; this structure could be the result of collimated jets from the evolved stars before they enter the planetary nebula phase. Theoretical models have shown that magnetic fields could be the dominant source of jet-collimation in evolved stars, just as these fields are thought to collimate outflows in other astrophysical sources, such as active galactic nuclei and proto-stars. But hitherto there have been no direct observations of both the magnetic field direction and strength in any collimated jet. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A (at a distance of 2.6 kpc from the Sun), which is undergoing rapid evolution into a planetary nebula. The masers occur in two clusters at opposing tips of the jets, approximately 1,000 au from the star. We conclude from the data that the magnetic field is indeed collimating the jet.  相似文献   

20.
Magnetic reconnection is a process that converts magnetic energy into bi-directional plasma jets; it is believed to be the dominant process by which solar-wind energy enters the Earth's magnetosphere. This energy is subsequently dissipated by magnetic storms and aurorae. Previous single-spacecraft observations revealed only single jets at the magnetopause--while the existence of a counter-streaming jet was implicitly assumed, no experimental confirmation was available. Here we report in situ two-spacecraft observations of bi-directional jets at the magnetopause, finding evidence for a stable and extended reconnection line; the latter implies substantial entry of the solar wind into the magnetosphere. We conclude that reconnection is determined by large-scale interactions between the solar wind and the magnetosphere, rather than by local conditions at the magnetopause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号