首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Quantum control of individual spins in condensed-matter devices is an emerging field with a wide range of applications, from nanospintronics to quantum computing. The electron, possessing spin and orbital degrees of freedom, is conventionally used as the carrier of quantum information in proposed devices. However, electrons couple strongly to the environment, and so have very short relaxation and coherence times. It is therefore extremely difficult to achieve quantum coherence and stable entanglement of electron spins. Alternative concepts propose nuclear spins as the building blocks for quantum computing, because such spins are extremely well isolated from the environment and less prone to decoherence. However, weak coupling comes at a price: it remains challenging to address and manipulate individual nuclear spins. Here we show that the nuclear spin of an individual metal atom embedded in a single-molecule magnet can be read out electronically. The observed long lifetimes (tens of seconds) and relaxation characteristics of nuclear spin at the single-atom scale open the way to a completely new world of devices in which quantum logic may be implemented.  相似文献   

2.
The spin of a confined electron, when oriented originally in some direction, will lose memory of that orientation after some time. Physical mechanisms leading to this relaxation of spin memory typically involve either coupling of the electron spin to its orbital motion or to nuclear spins. Relaxation of confined electron spin has been previously measured only for Zeeman or exchange split spin states, where spin-orbit effects dominate relaxation; spin flips due to nuclei have been observed in optical spectroscopy studies. Using an isolated GaAs double quantum dot defined by electrostatic gates and direct time domain measurements, we investigate in detail spin relaxation for arbitrary splitting of spin states. Here we show that electron spin flips are dominated by nuclear interactions and are slowed by several orders of magnitude when a magnetic field of a few millitesla is applied. These results have significant implications for spin-based information processing.  相似文献   

3.
Spin is a fundamental property of all elementary particles. Classically it can be viewed as a tiny magnetic moment, but a measurement of an electron spin along the direction of an external magnetic field can have only two outcomes: parallel or anti-parallel to the field. This discreteness reflects the quantum mechanical nature of spin. Ensembles of many spins have found diverse applications ranging from magnetic resonance imaging to magneto-electronic devices, while individual spins are considered as carriers for quantum information. Read-out of single spin states has been achieved using optical techniques, and is within reach of magnetic resonance force microscopy. However, electrical read-out of single spins has so far remained elusive. Here we demonstrate electrical single-shot measurement of the state of an individual electron spin in a semiconductor quantum dot. We use spin-to-charge conversion of a single electron confined in the dot, and detect the single-electron charge using a quantum point contact; the spin measurement visibility is approximately 65%. Furthermore, we observe very long single-spin energy relaxation times (up to approximately 0.85 ms at a magnetic field of 8 T), which are encouraging for the use of electron spins as carriers of quantum information.  相似文献   

4.
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.  相似文献   

5.
内嵌富勒烯N@C60与C60H28分子共结晶形成的单晶N@C60@C60H28,能够实现N@C60的有序排列,从而在实现基于内嵌富勒烯的可扩展量子计算上具有着突出的潜力.本项研究中,我们对单晶N@C60@C60H28中氮电子自旋的弛豫时间和弛豫机制做了详细的测试和分析,厘清了N@C60@C60H28样品中氮电子自旋相干时间(T2)降低的主要原因来自C60H28分子中质子核自旋热库的影响.通过动力学去耦实验技术,我们进一步有效地抑制了这一不利影响,实现了氮电子自旋T2时间的显著提升.这一研究结果对于更好地保护编码于有序富勒烯内电子自旋上的量子信息,进而实现量子计算,具有重要的意义.  相似文献   

6.
The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated controlled exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.  相似文献   

7.
The Kondo effect--a many-body phenomenon in condensed-matter physics involving the interaction between a localized spin and free electrons--was discovered in metals containing small amounts of magnetic impurities, although it is now recognized to be of fundamental importance in a wide class of correlated electron systems. In fabricated structures, the control of single, localized spins is of technological relevance for nanoscale electronics. Experiments have already demonstrated artificial realizations of isolated magnetic impurities at metallic surfaces, nanoscale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here we report an unexpected Kondo effect in a few-electron quantum dot containing singlet and triplet spin states, whose energy difference can be tuned with a magnetic field. We observe the effect for an even number of electrons, when the singlet and triplet states are degenerate. The characteristic energy scale is much larger than in the ordinary spin-1/2 case.  相似文献   

8.
Nadj-Perge S  Frolov SM  Bakkers EP  Kouwenhoven LP 《Nature》2010,468(7327):1084-1087
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.  相似文献   

9.
Roch N  Florens S  Bouchiat V  Wernsdorfer W  Balestro F 《Nature》2008,453(7195):633-637
Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.  相似文献   

10.
Yusa G  Muraki K  Takashina K  Hashimoto K  Hirayama Y 《Nature》2005,434(7036):1001-1005
The analytical technique of nuclear magnetic resonance (NMR) is based on coherent quantum mechanical superposition of nuclear spin states. Recently, NMR has received considerable renewed interest in the context of quantum computation and information processing, which require controlled coherent qubit operations. However, standard NMR is not suitable for the implementation of realistic scalable devices, which would require all-electrical control and the means to detect microscopic quantities of coherent nuclear spins. Here we present a self-contained NMR semiconductor device that can control nuclear spins in a nanometre-scale region. Our approach enables the direct detection of (otherwise invisible) multiple quantum coherences between levels separated by more than one quantum of spin angular momentum. This microscopic high sensitivity NMR technique is especially suitable for probing materials whose nuclei contain multiple spin levels, and may form the basis of a versatile multiple qubit device.  相似文献   

11.
Silicon is more than the dominant material in the conventional microelectronics industry: it also has potential as a host material for emerging quantum information technologies. Standard fabrication techniques already allow the isolation of single electron spins in silicon transistor-like devices. Although this is also possible in other materials, silicon-based systems have the advantage of interacting more weakly with nuclear spins. Reducing such interactions is important for the control of spin quantum bits because nuclear fluctuations limit quantum phase coherence, as seen in recent experiments in GaAs-based quantum dots. Advances in reducing nuclear decoherence effects by means of complex control still result in coherence times much shorter than those seen in experiments on large ensembles of impurity-bound electrons in bulk silicon crystals. Here we report coherent control of electron spins in two coupled quantum dots in an undoped Si/SiGe heterostructure and show that this system has a nuclei-induced dephasing time of 360 nanoseconds, which is an increase by nearly two orders of magnitude over similar measurements in GaAs-based quantum dots. The degree of phase coherence observed, combined with fast, gated electrical initialization, read-out and control, should motivate future development of silicon-based quantum information processors.  相似文献   

12.
Kato Y  Myers RC  Gossard AC  Awschalom DD 《Nature》2004,427(6969):50-53
A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin-orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing and spintronics, forming the basis of various device proposals. For example, the concept of spin field-effect transistors is based on spin precession due to the spin-orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to approximately 30 MHz.  相似文献   

13.
Crooker SA  Rickel DG  Balatsky AV  Smith DL 《Nature》2004,431(7004):49-52
Not all noise in experimental measurements is unwelcome. Certain fundamental noise sources contain valuable information about the system itself-a notable example being the inherent voltage fluctuations (Johnson noise) that exist across any resistor, which allow the temperature to be determined. In magnetic systems, fundamental noise can exist in the form of random spin fluctuations. For example, statistical fluctuations of N paramagnetic spins should generate measurable noise of order N spins, even in zero magnetic field. Here we exploit this effect to perform perturbation-free magnetic resonance. We use off-resonant Faraday rotation to passively detect the magnetization noise in an equilibrium ensemble of paramagnetic alkali atoms; the random fluctuations generate spontaneous spin coherences that precess and decay with the same characteristic energy and timescales as the macroscopic magnetization of an intentionally polarized or driven ensemble. Correlation spectra of the measured spin noise reveal g-factors, nuclear spin, isotope abundance ratios, hyperfine splittings, nuclear moments and spin coherence lifetimes-without having to excite, optically pump or otherwise drive the system away from thermal equilibrium. These noise signatures scale inversely with interaction volume, suggesting a possible route towards non-perturbative, sourceless magnetic resonance of small systems.  相似文献   

14.
Universal quantum computation with the exchange interaction   总被引:10,自引:0,他引:10  
DiVincenzo DP  Bacon D  Kempe J  Burkard G  Whaley KB 《Nature》2000,408(6810):339-342
Various physical implementations of quantum computers are being investigated, although the requirements that must be met to make such devices a reality in the laboratory at present involve capabilities well beyond the state of the art. Recent solid-state approaches have used quantum dots, donor-atom nuclear spins or electron spins; in these architectures, the basic two-qubit quantum gate is generated by a tunable exchange interaction between spins (a Heisenberg interaction), whereas the one-qubit gates require control over a local magnetic field. Compared to the Heisenberg operation, the one-qubit operations are significantly slower, requiring substantially greater materials and device complexity--potentially contributing to a detrimental increase in the decoherence rate. Here we introduced an explicit scheme in which the Heisenberg interaction alone suffices to implement exactly any quantum computer circuit. This capability comes at a price of a factor of three in additional qubits, and about a factor of ten in additional two-qubit operations. Even at this cost, the ability to eliminate the complexity of one-qubit operations should accelerate progress towards solid-state implementations of quantum computation.  相似文献   

15.
在对半导体量子点的研究中考虑自旋一轨道相互作用对极化子基态能量的影响.采用LLP变分的方法研究了电子一声子相互作用.结果表明声子对极化子基态能量起了很重要的作用,而且由于极化子分裂能对极化子基态能量的贡献很大,故在量子点中研究极化子性质时不可忽略极化子分裂能的影响.自旋分裂能随动量增加呈抛物线型增加.随Rashba自旋轨道耦合常数的增加极化子基态能量表现为增加和减少两种截然相反的情况,而两个分裂态中自旋向下的能态更稳定.Rashba效应不可忽略.  相似文献   

16.
Tombros N  Jozsa C  Popinciuc M  Jonkman HT  van Wees BJ 《Nature》2007,448(7153):571-574
Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.  相似文献   

17.
利用密度矩阵重整化群方法研究1/5掺杂对自旋1/2海森堡反铁磁链的影响.研究表明,掺人侧自旋能减弱近邻自旋关联但增强长程自旋关联,同时侧自旋的掺入破坏了子格对称性,导致系统基态反铁磁和铁磁长程序共存.侧自旋对量子涨落的抑制作用随自旋关联距离的增加而减弱,且其自身受到量子涨落的影响最小.对于1/5掺杂反铁磁海森堡自旋链,量子涨落的影响明显,引起了交错磁化率47%的减弱.  相似文献   

18.
Quantum decoherence is a central concept in physics. Applications such as quantum information processing depend on understanding it; there are even fundamental theories proposed that go beyond quantum mechanics, in which the breakdown of quantum theory would appear as an 'intrinsic' decoherence, mimicking the more familiar environmental decoherence processes. Such applications cannot be optimized, and such theories cannot be tested, until we have a firm handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate and testable predictions for environmental decoherence in molecular-based quantum magnets. Experiments on molecular magnets have successfully demonstrated quantum-coherent phenomena but the decoherence processes that ultimately limit such behaviour were not well constrained. For molecular magnets, theory predicts three principal contributions to environmental decoherence: from phonons, from nuclear spins and from intermolecular dipolar interactions. We use high magnetic fields on single crystals of Fe(8) molecular magnets (in which the Fe ions are surrounded by organic ligands) to suppress dipolar and nuclear-spin decoherence. In these high-field experiments, we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally, and there are no other visible decoherence sources. In these high fields, we obtain a maximum decoherence quality-factor of 1.49?×?10(6); our investigation suggests that the environmental decoherence time can be extended up to about 500 microseconds, with a decoherence quality factor of ~6?×?10(7), by optimizing the temperature, magnetic field and nuclear isotopic concentrations.  相似文献   

19.
采用改进的线性组合算符方法,研究了Rashba效应影响下半导体量子点中强耦合极化子的光学声子平均数.导出在电子-体纵光学声子(LO)强耦合时抛物量子点中极化子的光学声子平均数、振动频率、相互作用能和有效质量随受限强度和Rashba自旋-轨道耦合常数的变化.数值计算结果表明Rashba自旋-轨道相互作用使极化子的有效质量、基态能分裂为上下两支,随耦合常数的增加极化子基态能量、有效质量表现为增加和较少两种截然相反的情形;Rashba自旋-轨道相互作用影响下强耦合极化子的光学声子平均数随量子点的受限强度、电子声子耦合强度增大而增大,极化子的相互作用能随受限强度的增加先急剧增加,当达到极值后随受限强度的增加而急剧减少.  相似文献   

20.
The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号