首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Genome-wide association studies have identified SNPs within FTO, the human fat mass and obesity-associated gene, that are strongly associated with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh, on average, ~3 kg more than individuals with the low-risk T allele. Mice that lack FTO function and/or Fto expression display increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet. Our results suggest that increased body mass results primarily from increased food intake. Mice with increased Fto expression on a high-fat diet develop glucose intolerance. This study provides the first direct evidence that increased Fto expression causes obesity in mice.  相似文献   

2.
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.  相似文献   

3.
Multiple genetic loci associated with obesity or body mass index (BMI) have been identified through genome-wide association studies conducted predominantly in populations of European ancestry. We performed a meta-analysis of associations between BMI and approximately 2.4 million SNPs in 27,715 east Asians, which was followed by in silico and de novo replication studies in 37,691 and 17,642 additional east Asians, respectively. We identified ten BMI-associated loci at genome-wide significance (P < 5.0 × 10(-8)), including seven previously identified loci (FTO, SEC16B, MC4R, GIPR-QPCTL, ADCY3-DNAJC27, BDNF and MAP2K5) and three novel loci in or near the CDKAL1, PCSK1 and GP2 genes. Three additional loci nearly reached the genome-wide significance threshold, including two previously identified loci in the GNPDA2 and TFAP2B genes and a newly identified signal near PAX6, all of which were associated with BMI with P < 5.0 × 10(-7). Findings from this study may shed light on new pathways involved in obesity and demonstrate the value of conducting genetic studies in non-European populations.  相似文献   

4.
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of 14 studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight newly discovered signals yielding association with P < 5 × 10(-6) in nine independent data sets (2,818 cases and 4,083 controls), we observed two loci that yielded genome-wide significant combined P values near OLFM4 at 13q14 (rs9568856; P = 1.82 × 10(-9); odds ratio (OR) = 1.22) and within HOXB5 at 17q21 (rs9299; P = 3.54 × 10(-9); OR = 1.14). Both loci continued to show association when two extreme childhood obesity cohorts were included (2,214 cases and 2,674 controls). These two loci also yielded directionally consistent associations in a previous meta-analysis of adult BMI(1).  相似文献   

5.
6.
In millions of people, obesity leads to type 2 diabetes (T2D; also known as non-insulin-dependent diabetes mellitus). During the early stages of juvenile obesity, the increase of insulin secretion in proportion to accumulated fat balances insulin resistance and protects patients from hyperglycaemia. After several decades, however,beta-cell function deteriorates and T2D develops in approximately 20% of obese patients. In modern societies, obesity has thus become the leading risk factor for T2D (ref. 5). The factors that predispose obese patients to alteration of insulin secretion upon gaining weight remain unknown. To determine which genetic factors predispose obese patients to beta-cell dysfunction, and possibly T2D, we studied single-nucleotide polymorphisms (SNPs) in the region of the insulin gene (INS) among 615 obese children. We found that, in the early phase of obesity, alleles of the INS variable number of tandem repeat (VNTR) locus are associated with different effects of body fatness on insulin secretion. Young obese patients homozygous for class I VNTR alleles secrete more insulin than those with other genotypes.  相似文献   

7.
To identify some of the genetic factors that contribute to obesity in children of Central European and North African descent, we studied the parental transmission of alleles at the insulin locus to offspring with early-onset obesity. A variable nucleotide tandem repeat (VNTR) polymorphism upstream of the insulin gene (INS) is associated with variations in the expression of INS and the nearby gene encoding insulin-like growth factor 2 (IGF2). We found an excess of paternal transmission of class I VNTR alleles to obese children: children who inherited a class I allele from their father (but not those inheriting it from their mother) had a relative risk of early-onset obesity of 1.8. Due to the frequency of class I alleles in this population, this risk concerns 65-70% of all infants. These results suggest that increased in utero expression of paternal INS or IGF2 due to the class I INS VNTR allele may predispose offspring to postnatal fat deposition.  相似文献   

8.
We identified a locus on chromosome 6q16.3-q24.2 (ref. 1) associated with childhood obesity that includes 2.4 Mb common to eight genome scans for type 2 diabetes (T2D) or obesity. Analysis of the gene ENPP1 (also called PC-1), a candidate for insulin resistance, in 6,147 subjects showed association between a three-allele risk haplotype (K121Q, IVS20delT-11 and A-->G+1044TGA; QdelTG) and childhood obesity (odds ratio (OR) = 1.69, P = 0.0006), morbid or moderate obesity in adults (OR = 1.50, P = 0.006 or OR = 1.37, P = 0.02, respectively) and T2D (OR = 1.56, P = 0.00002). The Genotype IBD Sharing Test suggested that this obesity-associated ENPP1 risk haplotype contributes to the observed chromosome 6q linkage with childhood obesity. The haplotype confers a higher risk of glucose intolerance and T2D to obese children and their parents and associates with increased serum levels of soluble ENPP1 protein in children. Expression of a long ENPP1 mRNA isoform, which includes the obesity-associated A-->G+1044TGA SNP, was specific for pancreatic islet beta cells, adipocytes and liver. These findings suggest that several variants of ENPP1 have a primary role in mediating insulin resistance and in the development of both obesity and T2D, suggesting that an underlying molecular mechanism is common to both conditions.  相似文献   

9.
Obesity is a disorder with a complex genetic etiology, and its epidemic is a worldwide problem. Although multiple genetic loci associated with body mass index, the most common measure of obesity, have been identified in European populations, few studies have focused on Asian populations. Here we report a genome-wide association study and replication studies with 62,245 east Asian subjects, which identified two new body mass index-associated loci in the CDKAL1 locus at 6p22 (rs2206734, P = 1.4 × 10(-11)) and the KLF9 locus at 9q21 (rs11142387, P = 1.3 × 10(-9)), as well as several previously reported loci (the SEC16B, BDNF, FTO, MC4R and GIPR loci, P < 5.0 × 10(-8)). We subsequently performed gene-gene interaction analyses and identified an interaction (P = 2.0 × 10(-8)) between a SNP in the KLF9 locus (rs11142387) and one in the MSTN (also known as GDF8) locus at 2q32 (rs13034723). These findings should provide useful insights into the etiology of obesity.  相似文献   

10.
Mutations in PCSK1 cause monogenic obesity. To assess the contribution of PCSK1 to polygenic obesity risk, we genotyped tag SNPs in a total of 13,659 individuals of European ancestry from eight independent case-control or family-based cohorts. The nonsynonymous variants rs6232, encoding N221D, and rs6234-rs6235, encoding the Q665E-S690T pair, were consistently associated with obesity in adults and children (P = 7.27 x 10(-8) and P = 2.31 x 10(-12), respectively). Functional analysis showed a significant impairment of the N221D-mutant PC1/3 protein catalytic activity.  相似文献   

11.
Anand A  Chada K 《Nature genetics》2000,24(4):377-380
The HMGI family of proteins consists of three members, HMGIC, HMGI and HMGI(Y), that function as architectural factors and are essential components of the enhancesome. HMGIC is predominantly expressed in proliferating, undifferentiated mesenchymal cells and is not detected in adult tissues. It is disrupted and misexpressed in a number of mesenchymal tumour cell types, including fat-cell tumours (lipomas). In addition Hmgic-/- mice have a deficiency in fat tissue. To study its role in adipogenesis and obesity, we examined Hmgic expression in the adipose tissue of adult, obese mice. Mice with a partial or complete deficiency of Hmgic resisted diet-induced obesity. Disruption of Hmgic caused a reduction in the obesity induced by leptin deficiency (Lepob/Lepob) in a gene-dose-dependent manner. Our studies implicate a role for HMGIC in fat-cell proliferation, indicating that it may be an adipose-specific target for the treatment of obesity.  相似文献   

12.
Cidea-deficient mice have lean phenotype and are resistant to obesity   总被引:1,自引:0,他引:1  
The thermogenic activity of brown adipose tissue (BAT), important for adaptive thermogenesis and energy expenditure, is mediated by the mitochondrial uncoupling protein1 (Ucp1) that uncouples ATP generation and dissipates the energy as heat. We show here that Cidea, a protein of unknown function sharing sequence similarity with the N-terminal region of DNA fragmentation factors Dffb and Dffa, is expressed at high levels in BAT. Cidea-null mice had higher metabolic rate, lipolysis in BAT and core body temperature when subjected to cold treatment. Notably, Cidea-null mice are lean and resistant to diet-induced obesity and diabetes. Furthermore, we provide evidence that the role of Cidea in regulating thermogenesis, lipolysis and obesity may be mediated in part through its direct suppression of Ucp1 activity. Our data thus indicate a role for Cidea in regulating energy balance and adiposity.  相似文献   

13.
Bardet-Biedl syndrome (BBS, MIM 209900) is a heterogeneous autosomal recessive disorder characterized by obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. The disorder is also associated with diabetes mellitus, hypertension, and congenital heart disease. Six distinct BBS loci map to 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although BBS is rare in the general population (<1/100,000), there is considerable interest in identifying the genes causing BBS because components of the phenotype, such as obesity and diabetes, are common. We and others have demonstrated that BBS6 is caused by mutations in the gene MKKS (refs. 12,13), mutation of which also causes McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly, and congenital heart defects). MKKS has sequence homology to the alpha subunit of a prokaryotic chaperonin in the thermosome Thermoplasma acidophilum. We recently identified a novel gene that causes BBS2. The BBS2 protein has no significant similarity to other chaperonins or known proteins. Here we report the positional cloning and identification of mutations in BBS patients in a novel gene designated BBS4.  相似文献   

14.
Multiple organs cooperate to regulate appetite, metabolism, and glucose and fatty acid homeostasis. Here, we identified and characterized lymphatic vasculature dysfunction as a cause of adult-onset obesity. We found that functional inactivation of a single allele of the homeobox gene Prox1 led to adult-onset obesity due to abnormal lymph leakage from mispatterned and ruptured lymphatic vessels. Prox1 heterozygous mice are a new model for adult-onset obesity and lymphatic vascular disease.  相似文献   

15.
We previously identified Nob1 as a quantitative trait locus for high-fat diet-induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab-GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly expressed in skeletal muscle. Knockdown of TBC1D1 in skeletal muscle cells increased fatty acid uptake and oxidation, whereas overexpression of TBC1D1 had the opposite effect. Recombinant congenic mice lacking TBC1D1 showed reduced body weight, decreased respiratory quotient, increased fatty acid oxidation and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet-induced obesity by increasing lipid use in skeletal muscle.  相似文献   

16.
Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder predominantly characterized by obesity, retinal dystrophy, polydactyly, learning difficulties, hypogenitalism and renal malformations, with secondary features that include diabetes mellitus, endocrinological dysfunction and behavioural abnormalities. Despite an initial expectation of genetic homogeneity due to relative clinical uniformity, five BBS loci have been reported, with evidence for additional loci in the human genome; however, no genes for BBS have yet been identified. We performed a genome screen with BBS families from Newfoundland that were excluded from BBS1-5 and identified linkage with D20S189. Fine-mapping reduced the critical interval to 1.9 cM between D20S851 and D20S189, encompassing a chaperonin-like gene. Mutations in this gene were recently reported to be associated with McKusick-Kaufman syndrome (MKKS; ref. 8). Given both the mapping position and clinical similarities of these two syndromes, we screened MKKS and identified mutations in five Newfoundland and two European-American BBS pedigrees. Most are frameshift alleles that are likely to result in a non-functional protein. Our data suggest that a complete loss of function of the MKKS product, and thus an inability to fold a range of target proteins, is responsible for the clinical manifestations of BBS.  相似文献   

17.
Obesity is a disorder of energy balance. Hormone-sensitive lipase (HSL) mediates the hydrolysis of triacylglycerol, the major form of stored energy in the body. Perilipin (encoded by the gene Plin), an adipocyte protein, has been postulated to modulate HSL activity. We show here that targeted disruption of Plin results in healthy mice that have constitutively activated fat-cell HSL. Plin -/- mice consume more food than control mice, but have normal body weight. They are much leaner and more muscular than controls, have 62% smaller white adipocytes, show elevated basal lipolysis that is resistant to beta-adrenergic agonist stimulation, and are cold-sensitive except when fed. They are also resistant to diet-induced obesity. Breeding the Plin -/- alleles into Leprdb/db mice reverses the obesity by ncreasing the metabolic rate of the mice. Our results demonstrate a role for perilipin in reining in basal HSL activity and regulating lipolysis and energy balance; thus, agents that inactivate perilipin may prove useful as anti-obesity medications.  相似文献   

18.
Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~ 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10??), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.  相似文献   

19.
Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ~2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.  相似文献   

20.
To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10???) and 9q31.2 (P = 2.2 × 10?33), we identified 30 new menarche loci (all P < 5 × 10??) and found suggestive evidence for a further 10 loci (P < 1.9 × 10??). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号