首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Interaction with the NMDA receptor locks CaMKII in an active conformation.   总被引:29,自引:0,他引:29  
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.  相似文献   

2.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

3.
Neurotransmission at most excitatory synapses in the brain operates through two types of glutamate receptor termed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors; these mediate the fast and slow components of excitatory postsynaptic potentials respectively. Activation of NMDA receptors can also lead to a long-lasting modification in synaptic efficiency at glutamatergic synapses; this is exemplified in the CA1 region of the hippocampus, where NMDA receptors mediate the induction of long-term potentiation (LTP). It is believed that in this region LTP is maintained by a specific increase in the AMPA receptor-mediated component of synaptic transmission. We now report, however, that a pharmacologically isolated NMDA receptor-mediated synaptic response can undergo robust, synapse-specific LTP. This finding has implications for neuropathologies such as epilepsy and neurodegeneration, in which excessive NMDA receptor activation has been implicated. It adds fundamentally to theories of synaptic plasticity because NMDA receptor activation may, in addition to causing increased synaptic efficiency, directly alter the plasticity of synapses.  相似文献   

4.
A Artola  S Br?cher  W Singer 《Nature》1990,347(6288):69-72
In the hippocampus and neocortex, high-frequency (tetanic) stimulation of an afferent pathway leads to long-term potentiation (LTP) of synaptic transmission. In the hippocampus it has recently been shown that long-term depression (LTD) of excitatory transmission can also be induced by certain combinations of synaptic activation. In most hippocampal and all neocortical pathways studied so far, the induction of LTP requires the activation of N-methyl-D-aspartate (NMDA) receptor-gated conductances. Here we report that LTD can occur in neurons of slices of the rat visual cortex and that the same tetanic stimulation can induce either LTP or LTD depending on the level of depolarization of the postsynaptic neuron. By applying intracellular current injections or pharmacological disinhibition to modify the depolarizing response of the postsynaptic neuron to tetanic stimulation, we show that the mechanisms of induction of LTD and LTP are both postsynaptic. LTD is obtained if postsynaptic depolarization exceeds a critical level but remains below a threshold related to NMDA receptor-gated conductances, whereas LTP is induced if this second threshold is reached.  相似文献   

5.
Remondes M  Schuman EM 《Nature》2002,416(6882):736-740
The hippocampus is necessary for the acquisition and retrieval of declarative memories. The best-characterized sensory input to the hippocampus is the perforant path projection from layer II of entorhinal cortex (EC) to the dentate gyrus. Signals are then processed sequentially in the hippocampal CA fields before returning to the cortex via CA1 pyramidal neuron spikes. There is another EC input-the temporoammonic (TA) pathway-consisting of axons from layer III EC neurons that make synaptic contacts on the distal dendrites of CA1 neurons. Here we show that this pathway modulates both the plasticity and the output of the rat hippocampal formation. Bursts of TA activity can, depending on their timing, either increase or decrease the probability of Schaffer-collateral (SC)-evoked CA1 spikes. TA bursts can also significantly reduce the magnitude of synaptic potentiation at SC-CA1 synapses. The TA-CA1 synapse itself exhibits both long-term depression (LTD) and long-term potentiation (LTP). This capacity for bi-directional plasticity can, in turn, regulate the TA modulation of CA1 activity: LTP or LTD of the TA pathway either enhances or diminishes the gating of CA1 spikes and plasticity inhibition, respectively.  相似文献   

6.
Persistent protein kinase activity underlying long-term potentiation   总被引:41,自引:0,他引:41  
R Malinow  D V Madison  R W Tsien 《Nature》1988,335(6193):820-824
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a much-studied example of synaptic plasticity. Although the role of N-methyl-D-aspartate (NMDA) receptors in the induction of LTP is well established, the nature of the persistent signal underlying this synaptic enhancement is unclear. Involvement of protein phosphorylation in LTP has been widely proposed, with protein kinase C (PKC) and calcium-calmodulin kinase type II (CaMKII) as leading candidates. Here we test whether the persistent signal in LTP is an enduring phosphoester bond, a long-lived kinase activator, or a constitutively active protein kinase by using H-7, which inhibits activated protein kinases and sphingosine, which competes with activators of PKC (ref. 17) and CaMKII (ref. 18). H-7 suppressed established LTP, indicating that the synaptic potentiation is sustained by persistent protein kinase activity rather than a stably phosphorylated substrate. In contrast, sphingosine did not inhibit established LTP, although it was effective when applied before tetanic stimulation. This suggests that persistent kinase activity is not maintained by a long-lived activator, but is effectively constitutive. Surprisingly, the H-7 block of LTP was reversible; evidently, the kinase directly underlying LTP remains activated even though its catalytic activity is interrupted indicating that such kinase activity does not sustain itself simply through continual autophosphorylation (see refs 9, 13, 15).  相似文献   

7.
Synaptic scaling mediated by glial TNF-alpha   总被引:1,自引:0,他引:1  
Stellwagen D  Malenka RC 《Nature》2006,440(7087):1054-1059
Two general forms of synaptic plasticity that operate on different timescales are thought to contribute to the activity-dependent refinement of neural circuitry during development: (1) long-term potentiation (LTP) and long-term depression (LTD), which involve rapid adjustments in the strengths of individual synapses in response to specific patterns of correlated synaptic activity, and (2) homeostatic synaptic scaling, which entails uniform adjustments in the strength of all synapses on a cell in response to prolonged changes in the cell's electrical activity. Without homeostatic synaptic scaling, neural networks can become unstable and perform suboptimally. Although much is known about the mechanisms underlying LTP and LTD, little is known about the mechanisms responsible for synaptic scaling except that such scaling is due, at least in part, to alterations in receptor content at synapses. Here we show that synaptic scaling in response to prolonged blockade of activity is mediated by the pro-inflammatory cytokine tumour-necrosis factor-alpha (TNF-alpha). Using mixtures of wild-type and TNF-alpha-deficient neurons and glia, we also show that glia are the source of the TNF-alpha that is required for this form of synaptic scaling. We suggest that by modulating TNF-alpha levels, glia actively participate in the homeostatic activity-dependent regulation of synaptic connectivity.  相似文献   

8.
Passafaro M  Nakagawa T  Sala C  Sheng M 《Nature》2003,424(6949):677-681
Synaptic transmission from excitatory nerve cells in the mammalian brain is largely mediated by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors located at the surface of dendritic spines. The abundance of postsynaptic AMPA receptors correlates with the size of the synapse and the dimensions of the dendritic spine head. Moreover, long-term potentiation is associated with the formation of dendritic spines as well as synaptic delivery of AMPA receptors. The molecular mechanisms that coordinate AMPA receptor delivery and spine morphogenesis are unknown. Here we show that overexpression of the glutamate receptor 2 (GluR2) subunit of AMPA receptors increases spine size and density in hippocampal neurons, and more remarkably, induces spine formation in GABA-releasing interneurons that normally lack spines. The extracellular N-terminal domain (NTD) of GluR2 is responsible for this effect, and heterologous fusion proteins of the NTD of GluR2 inhibit spine morphogenesis. We propose that the NTD of GluR2 functions at the cell surface as part of a receptor-ligand interaction that is important for spine growth and/or stability.  相似文献   

9.
Rongo C  Kaplan JM 《Nature》1999,402(6758):195-199
Synaptic connections undergo a dynamic process of stabilization or elimination during development, and this process is thought to be critical in memory and learning and in establishing the specificity of synaptic connections. The type II calcium- and calmodulin-dependent protein kinase (CaMKII) has been proposed to be pivotal in regulating synaptic strength and in maturation of synapses during development. Here we describe how CaMKII regulates the formation of central glutamatergic synapses in Caenorhabditis elegans. During larval development, the density of ventral nerve cord synapses containing the GLR-1 glutamate receptor is held constant despite marked changes in neurite length. The coupling of synapse number to neurite length requires both CaMKII and voltage-gated calcium channels. CaMKII regulates GLR-1 by at least two distinct mechanisms: regulating transport of GLR-1 from cell bodies to neurites; and regulating the addition or maintenance of GLR-1 to postsynaptic elements.  相似文献   

10.
P K Stanton  T J Sejnowski 《Nature》1989,339(6221):215-218
A brief, high-frequency activation of excitatory synapses in the hippocampus produces a long-lasting increase in synaptic strengths called long-term potentiation (LTP). A test input, which by itself does not have a long-lasting effect on synaptic strengths, can be potentiated through association when it is activated at the same time as a separate conditioning input. Neural network modelling studies have also predicted that synaptic strengths should be weakened when test and conditioning inputs are anti-correlated. Evidence for such heterosynaptic depression in the hippocampus has been found for inputs that are inactive or weakly active during the stimulation of a conditioning input, but this depression does not depend on any pattern of test input activity and does not seem to last as long as LTP. We report here an associative long-term depression (LTD) in field CA1 that is produced when a low-frequency test input is negatively correlated in time with a high-frequency conditioning input. LTD of synaptic strength is also produced by activating presynaptic terminals while a postsynaptic neuron is hyperpolarized. This confirms theoretical predictions that the mechanism for associative LTD is homosynaptic and follows a hebbian covariance rule.  相似文献   

11.
Nishiyama M  Hong K  Mikoshiba K  Poo MM  Kato K 《Nature》2000,408(6812):584-588
Activity-induced synaptic modification is essential for the development and plasticity of the nervous system. Repetitive correlated activation of pre- and postsynaptic neurons can induce persistent enhancement or decrement of synaptic efficacy, commonly referred to as long-term potentiation or depression (LTP or LTD). An important unresolved issue is whether and to what extent LTP and LTD are restricted to the activated synapses. Here we show that, in the CA1 region of the hippocampus, reduction of postsynaptic calcium influx by partial blockade of NMDA (N-methyl-D-aspartate) receptors results in a conversion of LTP to LTD and a loss of input specificity normally associated with LTP, with LTD appearing at heterosynaptic inputs. The induction of LTD at homo- and heterosynaptic sites requires functional ryanodine receptors and inositol triphosphate (InsP3) receptors, respectively. Functional blockade or genetic deletion of type 1 InsP3 receptors led to a conversion of LTD to LTP and elimination of heterosynaptic LTD, whereas blocking ryanodine receptors eliminated only homosynaptic LTD. Thus, postsynaptic Ca2+, deriving from Ca2+ influx and differential release of Ca2+ from internal stores through ryanodine and InsP3 receptors, regulates both the polarity and input specificity of activity-induced synaptic modification.  相似文献   

12.
F L Kidd  J T Isaac 《Nature》1999,400(6744):569-573
Most of the fast excitatory synaptic transmission in the mammalian brain is mediated by ionotrophic glutamate receptors, of which there are three subtypes: AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate), NMDA (N-methyl-D-aspartate) and kainate. Although kainate-receptor subunits (GluR5-7, KA1 and 2) are widely expressed in the mammalian central nervous system, little is known about their function. The development of pharmacological agents that distinguish between AMPA and kainate receptors has now allowed the functions of kainate receptors to be investigated. The modulation of synaptic transmission by kainate receptors and their synaptic activation in a variety of brain regions have been reported. The expression of kainate receptor subunits is developmentally regulated but their role in plasticity and development is unknown. Here we show that developing thalamocortical synapses express postsynaptic kainate receptors as well as AMPA receptors; however, the two receptor subtypes do not colocalize. During the critical period for experience-dependent plasticity, the kainate-receptor contribution to transmission decreases; a similar decrease occurs when long-term potentiation is induced in vitro. This indicates that during development there is activity-dependent regulation of the expression of kainate receptors at thalamocortical synapses.  相似文献   

13.
NMDA application potentiates synaptic transmission in the hippocampus   总被引:13,自引:0,他引:13  
J A Kauer  R C Malenka  R A Nicoll 《Nature》1988,334(6179):250-252
The NMDA (N-methyl-D-aspartate) class of glutamate receptor plays a critical role in a variety of forms of synaptic plasticity in the vertebrate central nervous system. One extensively studied example of plasticity is long-term potentiation (LTP), a remarkably long-lasting enhancement of synaptic efficiency induced in the hippocampus by brief, high-frequency stimulation of excitatory synapses. LTP is a strong candidate for a cellular mechanism of learning and memory. The site of LTP induction appears to be the postsynaptic cell and induction requires both activation of NMDA receptors by synaptically released glutamate and depolarization of the postsynaptic membrane. It is proposed that this depolarization relieves a voltage-dependent Mg2+ block of the NMDA receptor channel, resulting in increased calcium influx which is the trigger for the induction of LTP. This model predicts that application of a large depolarizing dose of NMDA should be sufficient to evoke LTP. In agreement with a previous study, we have found that NMDA or glutamate application does potentiate synaptic transmission in the hippocampus. This agonist-induced potentiation is, however, decremental and short-lived, unlike LTP. It is occluded shortly after the induction of LTP and a similar short-term potentiation can be evoked by synaptically released glutamate. We thus propose that LTP has two components, a short-term, decremental component which can be mimicked by NMDA receptor activation, and a long-lasting, non-decremental component which, in addition to requiring activation of NMDA receptors, requires stimulation of presynaptic afferents.  相似文献   

14.
RIM1alpha is required for presynaptic long-term potentiation.   总被引:8,自引:0,他引:8  
Two main forms of long-term potentiation (LTP)-a prominent model for the cellular mechanism of learning and memory-have been distinguished in the mammalian brain. One requires activation of postsynaptic NMDA (N-methyl d-aspartate) receptors, whereas the other, called mossy fibre LTP, has a principal presynaptic component. Mossy fibre LTP is expressed in hippocampal mossy fibre synapses, cerebellar parallel fibre synapses and corticothalamic synapses, where it apparently operates by a mechanism that requires activation of protein kinase A. Thus, presynaptic substrates of protein kinase A are probably essential in mediating this form of long-term synaptic plasticity. Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable. Here we report that mossy fibre LTP in the hippocampus and the cerebellum is abolished in mice lacking RIM1alpha, an active zone protein that binds to Rab3A and that is also a protein kinase A substrate. Our results indicate that the long-term increase in neurotransmitter release during mossy fibre LTP may be mediated by a unitary mechanism that involves the GTP-dependent interaction of Rab3A with RIM1alpha at the interface of synaptic vesicles and the active zone.  相似文献   

15.
Regulation of AMPA receptor lateral movements   总被引:11,自引:0,他引:11  
Borgdorff AJ  Choquet D 《Nature》2002,417(6889):649-653
An essential feature in the modulation of the efficacy of synaptic transmission is rapid changes in the number of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors at post-synaptic sites on neurons. Regulation of receptor endo- and exocytosis has been shown to be involved in this process. Whether regulated lateral diffusion of receptors in the plasma membrane also participates in receptor exchange to and from post-synaptic sites remains unknown. We analysed the lateral mobility of native AMPA receptors containing the glutamate receptor subunit GluR2 in rat cultured hippocampal neurons, using single-particle tracking and video microscopy. Here we show that AMPA receptors alternate within seconds between rapid diffusive and stationary behaviour. During maturation of neurons, stationary periods increase in frequency and length, often in spatial correlation with synaptic sites. Raising intracellular calcium, a central element in synaptic plasticity, triggers rapid receptor immobilization and local accumulation on the neuronal surface. We suggest that calcium influx prevents AMPA receptors from diffusing, and that lateral receptor diffusion to and from synaptic sites acts in the rapid and controlled regulation of receptor numbers at synapses.  相似文献   

16.
Potentiation of synaptic transmission in the hippocampus by phorbol esters   总被引:39,自引:0,他引:39  
R C Malenka  D V Madison  R A Nicoll 《Nature》1986,321(6066):175-177
Protein kinase C (PKC), a calcium-dependent phospholipid-sensitive kinase which is selectively activated by phorbol esters, is thought to play an important role in several cellular processes. In mammalian brain PKC is present in high concentrations and has been shown to phosphorylate several substrate phosphoproteins, one of which may be involved in the generation of long-term potentiation (LTP), a long-lasting increase in synaptic efficacy evoked by brief, high-frequency stimulation. Since the hippocampus contains one of the brain's highest levels of binding sites for phorbol esters and is the site where LTP has been most thoroughly characterized, we examined the effects of phorbol esters on hippocampal synaptic transmission and LTP. We found that phorbol esters profoundly potentiate excitatory synaptic transmission in the hippocampus in a manner that appears indistinguishable from LTP. Furthermore, after maximal synaptic enhancement by phorbol esters, LTP can no longer be elicited. Although the site of synaptic enhancement during LTP is not clearly established, phorbol esters appear to potentiate synaptic transmission by acting primarily at a presynaptic locus since changes in the postsynaptic responses to the putative transmitter, glutamate, cannot account for the increased synaptic responses induced by phorbol esters. These findings, in conjunction with previous biochemical studies, raise the possibility that, in mammalian brain, PKC plays a role in controlling the release of neurotransmitter and may be involved in the generation of LTP.  相似文献   

17.
18.
Liu SQ  Cull-Candy SG 《Nature》2000,405(6785):454-458
Activity-dependent change in the efficacy of transmission is a basic feature of many excitatory synapses in the central nervous system. The best understood postsynaptic modification involves a change in responsiveness of AMPAR (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor)-mediated currents following activation of NMDA (N-methyl-D-aspartate) receptors or Ca2+-permeable AMPARs. This process is thought to involve alteration in the number and phosphorylation state of postsynaptic AMPARs. Here we describe a new form of synaptic plasticity--a rapid and lasting change in the subunit composition and Ca2+ permeability of AMPARs at cerebellar stellate cell synapses following synaptic activity. AMPARs lacking the edited GluR2 subunit not only exhibit high Ca2+ permeability but also are blocked by intracellular polyamines. These properties have allowed us to follow directly the involvement of GluR2 subunits in synaptic transmission. Repetitive synaptic activation of Ca2+-permeable AMPARs causes a rapid reduction in Ca2+ permeability and a change in the amplitude of excitatory postsynaptic currents, owing to the incorporation of GluR2-containing AMPARs. Our experiments show that activity-induced Ca2+ influx through GluR2-lacking AMPARs controls the targeting of GluR2-containing AMPARs, implying the presence of a self-regulating mechanism.  相似文献   

19.
Toni N  Buchs PA  Nikonenko I  Bron CR  Muller D 《Nature》1999,402(6760):421-425
Structural remodelling of synapses and formation of new synaptic contacts has been postulated as a possible mechanism underlying the late phase of long-term potentiation (LTP), a form of plasticity which is involved in learning and memory. Here we use electron microscopy to analyse the morphology of synapses activated by high-frequency stimulation and identified by accumulated calcium in dendritic spines. LTP induction resulted in a sequence of morphological changes consisting of a transient remodelling of the postsynaptic membrane followed by a marked increase in the proportion of axon terminals contacting two or more dendritic spines. Three-dimensional reconstruction revealed that these spines arose from the same dendrite. As pharmacological blockade of LTP prevented these morphological changes, we conclude that LTP is associated with the formation of new, mature and probably functional synapses contacting the same presynaptic terminal and thereby duplicating activated synapses.  相似文献   

20.
Long-term potentiation (LTP) in the hippocampus is widely studied as the mechanisms involved in its induction and maintenance are believed to underlie fundamental properties of learning and memory in vertebrates. Most synapses that exhibit LTP use an excitatory amino-acid neurotransmitter that acts on two types of receptor, the N-methyl-D-aspartate (NMDA) and quisqualate receptors. The quisqualate receptor mediates the fast synaptic response evoked by low-frequency stimulation, whereas the NMDA receptor system is activated transiently by tetanic stimulation, leading to the induction of LTP. The events responsible for maintaining LTP once it is established are not known. We now demonstrate that the sensitivity of CA1 neurons in hippocampal slices to ionophoretically-applied quisqualate receptor ligands slowly increases following the induction of LTP. This provides direct evidence for a functional post-synaptic change and suggests that pre-synaptic mechanisms also contribute, but in a temporally distinct manner, to the maintenance of LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号