首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rando TA 《Nature》2006,441(7097):1080-1086
Adult stem cells reside in most mammalian tissues, but the extent to which they contribute to normal homeostasis and repair varies widely. There is an overall decline in tissue regenerative potential with age, and the question arises as to whether this is due to the intrinsic ageing of stem cells or, rather, to the impairment of stem-cell function in the aged tissue environment. Unravelling these distinct contributions to the aged phenotype will be critical to the success of any therapeutic application of stem cells in the emerging field of regenerative medicine with respect to tissue injury, degenerative diseases or normal functional declines that accompany ageing.  相似文献   

2.
Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a   总被引:2,自引:0,他引:2  
Stem-cell ageing is thought to contribute to altered tissue maintenance and repair. Older humans experience increased bone marrow failure and poorer haematologic tolerance of cytotoxic injury. Haematopoietic stem cells (HSCs) in older mice have decreased per-cell repopulating activity, self-renewal and homing abilities, myeloid skewing of differentiation, and increased apoptosis with stress. Here we report that the cyclin-dependent kinase inhibitor p16INK4a, the level of which was previously noted to increase in other cell types with age, accumulates and modulates specific age-associated HSC functions. Notably, in the absence of p16INK4a, HSC repopulating defects and apoptosis were mitigated, improving the stress tolerance of cells and the survival of animals in successive transplants, a stem-cell-autonomous tissue regeneration model. Inhibition of p16INK4a may ameliorate the physiological impact of ageing on stem cells and thereby improve injury repair in aged tissue.  相似文献   

3.
The stem-cell niche as an entity of action   总被引:1,自引:0,他引:1  
Scadden DT 《Nature》2006,441(7097):1075-1079
Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.  相似文献   

4.
Cheng J  Türkel N  Hemati N  Fuller MT  Hunt AJ  Yamashita YM 《Nature》2008,456(7222):599-604
Asymmetric division of adult stem cells generates one self-renewing stem cell and one differentiating cell, thereby maintaining tissue homeostasis. A decline in stem cell function has been proposed to contribute to tissue ageing, although the underlying mechanism is poorly understood. Here we show that changes in the stem cell orientation with respect to the niche during ageing contribute to the decline in spermatogenesis in the male germ line of Drosophila. Throughout the cell cycle, centrosomes in germline stem cells (GSCs) are oriented within their niche and this ensures asymmetric division. We found that GSCs containing misoriented centrosomes accumulate with age and that these GSCs are arrested or delayed in the cell cycle. The cell cycle arrest is transient, and GSCs appear to re-enter the cell cycle on correction of centrosome orientation. On the basis of these findings, we propose that cell cycle arrest associated with centrosome misorientation functions as a mechanism to ensure asymmetric stem cell division, and that the inability of stem cells to maintain correct orientation during ageing contributes to the decline in spermatogenesis. We also show that some of the misoriented GSCs probably originate from dedifferentiation of spermatogonia.  相似文献   

5.
Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.  相似文献   

6.
How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells—an ectoenzyme that produces the paracrine factor cyclic ADP ribose—mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.  相似文献   

7.
8.
9.
Dominant role of the niche in melanocyte stem-cell fate determination   总被引:47,自引:0,他引:47  
Stem cells which have the capacity to self-renew and generate differentiated progeny are thought to be maintained in a specific environment known as a niche. The localization of the niche, however, remains largely obscure for most stem-cell systems. Melanocytes (pigment cells) in hair follicles proliferate and differentiate closely coupled to the hair regeneration cycle. Here we report that stem cells of the melanocyte lineage can be identified, using Dct-lacZ transgenic mice, in the lower permanent portion of mouse hair follicles throughout the hair cycle. It is only the population in this region that fulfils the criteria for stem cells, being immature, slow cycling, self-maintaining and fully competent in regenerating progeny on activation at early anagen (the growing phase of hair follicles). Induction of the re-pigmentation process in K14-steel factor transgenic mice demonstrates that a portion of amplifying stem-cell progeny can migrate out from the niche and retain sufficient self-renewing capability to function as stem cells after repopulation into vacant niches. Our data indicate that the niche has a dominant role in the fate determination of melanocyte stem-cell progeny.  相似文献   

10.
A diminished capacity to maintain tissue homeostasis is a central physiological characteristic of ageing. As stem cells regulate tissue homeostasis, depletion of stem cell reserves and/or diminished stem cell function have been postulated to contribute to ageing. It has further been suggested that accumulated DNA damage could be a principal mechanism underlying age-dependent stem cell decline. We have tested these hypotheses by examining haematopoietic stem cell reserves and function with age in mice deficient in several genomic maintenance pathways including nucleotide excision repair, telomere maintenance and non-homologous end-joining. Here we show that although deficiencies in these pathways did not deplete stem cell reserves with age, stem cell functional capacity was severely affected under conditions of stress, leading to loss of reconstitution and proliferative potential, diminished self-renewal, increased apoptosis and, ultimately, functional exhaustion. Moreover, we provide evidence that endogenous DNA damage accumulates with age in wild-type stem cells. These data are consistent with DNA damage accrual being a physiological mechanism of stem cell ageing that may contribute to the diminished capacity of aged tissues to return to homeostasis after exposure to acute stress or injury.  相似文献   

11.
Wurmser AE  Nakashima K  Summers RG  Toni N  D'Amour KA  Lie DC  Gage FH 《Nature》2004,430(6997):350-356
Somatic stem cells have been claimed to possess an unexpectedly broad differentiation potential (referred to here as plasticity) that could be induced by exposing stem cells to the extracellular developmental signals of other lineages in mixed-cell cultures. Recently, this and other experimental evidence supporting the existence of stem-cell plasticity have been refuted because stem cells have been shown to adopt the functional features of other lineages by means of cell-fusion-mediated acquisition of lineage-specific determinants (chromosomal DNA) rather than by signal-mediated differentiation. In this study we co-cultured mouse neural stem cells (NSCs), which are committed to become neurons and glial cells, with human endothelial cells, which form the lining of blood vessels. We show that in the presence of endothelial cells six per cent of the NSC population converted to cells that did not express neuronal or glial markers, but instead showed the stable expression of multiple endothelial markers and the capacity to form capillary networks. This was surprising because NSCs and endothelial cells are believed to develop from the ectoderm and mesoderm, respectively. Experiments in which endothelial cells were killed by fixation before co-culture with live NSCs (to prevent cell fusion) and karyotyping analyses, revealed that NSCs had differentiated into endothelial-like cells independently of cell fusion. We conclude that stem-cell plasticity is a true characteristic of NSCs and that the conversion of NSCs to unanticipated cell types can be accomplished without cell fusion.  相似文献   

12.
Sousa-Nunes R  Yee LL  Gould AP 《Nature》2011,471(7339):508-512
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.  相似文献   

13.
Hedgehog acts as a somatic stem cell factor in the Drosophila ovary   总被引:12,自引:0,他引:12  
Zhang Y  Kalderon D 《Nature》2001,410(6828):599-604
Secreted signalling molecules of the Hedgehog (Hh) family have many essential patterning roles during development of diverse organisms including Drosophila and humans. Although Hedgehog proteins most commonly affect cell fate, they can also stimulate cell proliferation. In humans several distinctive cancers, including basal-cell carcinoma, result from mutations that aberrantly activate Hh signal transduction. In Drosophila, Hh directly stimulates proliferation of ovarian somatic cells. Here we show that Hh acts specifically on stem cells in the Drosophila ovary. These cells cannot proliferate as stem cells in the absence of Hh signalling, whereas excessive Hh signalling produces supernumerary stem cells. We deduce that Hh is a stem-cell factor and suggest that human cancers due to excessive Hh signalling might result from aberrant expansion of stem cell pools.  相似文献   

14.
Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of ageing. Here we address this question by taking advantage of the highly specific role of DNA ligase IV in the repair of DNA double-strand breaks by non-homologous end-joining, and by the discovery of a unique mouse strain with a hypomorphic Lig4(Y288C) mutation. The Lig4(Y288C) mouse, identified by means of a mutagenesis screening programme, is a mouse model for human LIG4 syndrome, showing immunodeficiency and growth retardation. Diminished DNA double-strand break repair in the Lig4(Y288C) strain causes a progressive loss of haematopoietic stem cells and bone marrow cellularity during ageing, and severely impairs stem cell function in tissue culture and transplantation. The sensitivity of haematopoietic stem cells to non-homologous end-joining deficiency is therefore a key determinant of their ability to maintain themselves against physiological stress over time and to withstand culture and transplantation.  相似文献   

15.
Asymmetric and symmetric stem-cell divisions in development and cancer   总被引:2,自引:0,他引:2  
Morrison SJ  Kimble J 《Nature》2006,441(7097):1068-1074
Much has been made of the idea that asymmetric cell division is a defining characteristic of stem cells that enables them to simultaneously perpetuate themselves (self-renew) and generate differentiated progeny. Yet many stem cells can divide symmetrically, particularly when they are expanding in number during development or after injury. Thus, asymmetric division is not necessary for stem-cell identity but rather is a tool that stem cells can use to maintain appropriate numbers of progeny. The facultative use of symmetric or asymmetric divisions by stem cells may be a key adaptation that is crucial for adult regenerative capacity.  相似文献   

16.
Wong KK  Maser RS  Bachoo RM  Menon J  Carrasco DR  Gu Y  Alt FW  DePinho RA 《Nature》2003,421(6923):643-648
Ataxia-telangiectasia (A-T) results from the loss of ataxia-telangiectasia mutated (Atm) function and is characterized by accelerated telomere loss, genomic instability, progressive neurological degeneration, premature ageing and increased neoplasia incidence. Here we evaluate the functional interaction of Atm and telomeres in vivo. We examined the impact of Atm deficiency as a function of progressive telomere attrition at both the cellular and whole-organism level in mice doubly null for Atm and the telomerase RNA component (Terc). These compound mutants showed increased telomere erosion and genomic instability, yet they experienced a substantial elimination of T-cell lymphomas associated with Atm deficiency. A generalized proliferation defect was evident in all cell types and tissues examined, and this defect extended to tissue stem/progenitor cell compartments, thereby providing a basis for progressive multi-organ system compromise, accelerated ageing and premature death. We show that Atm deficiency and telomere dysfunction act together to impair cellular and whole-organism viability, thus supporting the view that aspects of A-T pathophysiology are linked to the functional state of telomeres and its adverse effects on stem/progenitor cell reserves.  相似文献   

17.
18.
Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30?days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (T(reg)) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with T(reg) cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. T(reg) cells seem to participate in creating a localized zone where HSPCs reside and where T(reg) cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.  相似文献   

19.
The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing. The robust regenerative abilities of planarians are based upon a population of totipotent stem cells (neoblasts), and among the organs regenerated by these animals is a well-organized central nervous system. In recent years, methodologies such as whole-mount in situ hybridizations and double-stranded RNA have been extended to planarians with the aim of unravelling the molecular basis of their regenerative capacities. Here we report the identification and characterization of nou-darake (ndk), a gene encoding a fibroblast growth factor receptor (FGFR)-like molecule specifically expressed in the head region of the planarian Dugesia japonica. Loss of function of ndk by RNA interference results in the induction of ectopic brain tissues throughout the body. This ectopic brain formation was suppressed by inhibition of two planarian FGFR homologues (FGFR1 and FGFR2). Additionally, ndk inhibits FGF signalling in Xenopus embryos. The data suggest that ndk may modulate FGF signalling in stem cells to restrict brain tissues to the head region of planarians.  相似文献   

20.
The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke's pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke's-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号