首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
我国生产的原油大多为含蜡原油,加热输送是含蜡原油的主要输送方式。埋地热含蜡原油管道的运行中涉及若干复杂的非稳态传热问题。从管内原油传热(内部传热)和管道与外部环境的传热(外部传热)两方面,分析和总结了含蜡原油管道非稳态传热问题的研究现状,介绍了管道在土壤中传热的影响因素,比较了其各种解析和数值解法,阐述了管道停输状态下管内含蜡原油相变传热的规律及研究方法,讨论了非稳定流动状态下管内油流的水力—热力耦合问题及求解方法,指出了埋地热含蜡原油管道的非稳态传热方面需进一步研究的问题。  相似文献   

2.
埋地热油管道停输后周围土壤温度场的数值模拟   总被引:6,自引:0,他引:6  
为精确模拟管道周围土壤温度场,建立了埋地热油管道周围土壤温度场数学模型.在模型中,根据管外不同位置处土壤受热油管道散热影响的大小,将管外热影响区域简化为矩形并分为两部分,其中第一部分为距管外壁0.5 m内的环形烘干区域.针对该模型,编制了有限元程序计算管道周围土壤温度分布.计算结果表明,管外径426 mm、管内油温65.0℃、管道埋深处自然地温9.0℃时,矩形热影响区域的水平边界距管中心距离在13 m左右;若管道停输40 h,仅管道周围1.1 m内的土壤温度发生变化,为管道停输再启动的安全性评价提供了科学依据.  相似文献   

3.
王敏 《科学技术与工程》2011,(22):5281-5285
针对埋地热油管道的停输温降过程,分别建立了埋地热油管道的物理模型和数学模型,并应用FLUENT软件模拟了不同土壤导热系数、不同大气温度下的温度场分布。同时在稳态的基础上模拟非稳态,得出停输后温度场、速度场的分布。并对不同油温下的温度分布进行模拟,得出了温度场在不同条件影响下的分布规律。对于优化管道建设和制定科学合理的热油输送工艺具有重要的作用。  相似文献   

4.
油田集油管道的温降计算是否准确直接影响到油田能耗的高低及油田集输管道的安全性。建立了土壤自然温度场模型,并与实测数据进行了比较,结果表明,按大气温度年周期性变化计算土壤温度场方法是可行的,误差在工程允许范围内。同时,分析了油田集输管道温降的影响因素,得出了大气温度年周期性变化对集油管道温降的影响,结果表明:同一埋深管道的温降随大气温度年周期性变化而变化,埋深变化时,集油管道的温降随大气温度年周期性变化时延迟时间不同。  相似文献   

5.
研究了埋地热油管道中油品流态变化时所对应的临界温度的求解方法,提出用临界温度来判断埋地热油管道中流态和流型的变化情况。在考虑原油物性和总传热系数随温度变化以及摩擦生热的基础上建立了埋地热油管道正常运行时的轴向温降数学模型,并研究了数学模型的求解方法,提出了求解埋地热油管道正常运行时的轴向温降数学模型的步骤,由于模型中考虑了原油物性和总传热系数随温度的变化,因此,利用此方法的计算结果更接近于实际。  相似文献   

6.
并行埋地管道中,常温输送的成品油管道会影响热原油管道的温度场,从而与单根输油管道的温度场不同.热油管道周围土壤温度场是管道停输再启动和管道运行的基础,只有准确掌握管道周围土壤温度场的变化规律,才能使管道安全运行,避免凝管事故发生.为了研究并行管道周围土壤温度场在准周期内的变化规律,以西部原油成品油管道四堡进站位置为例,在实测管道周围土壤物性的基础上,采用非结构化有限容积法对并行埋地管道周围土壤温度场进行模拟研究.模拟计算结果与现场实测结果基本吻合,表明提出的计算模型正确,计算结果能够为工程实际提供参考.  相似文献   

7.
基于中俄原油管道永冻区工程建设特点,建立冻土多孔介质水热耦合数学模型。地表环境温度采用周期性边界条件,利用SIMPLER算法进行数值求解,得到埋地热油管道自第一年4月末投产,不同月份土壤温度场、水分场、冰水相变界面移动规律随环境温度周期波动的变化关系,并利用ANSYS软件对土壤水热耦合温度场进行冻胀应力分析。结果表明:在地表温度的周期波动下,较长时间内管道周围土壤温度变化剧烈,且受温差和重力的影响,土壤中水分产生了沿管道中心线自上而下的自然对流,随地表以下不同土层温度的不断变化,自然对流涡旋中心形态及强度变化明显,温度梯度对水分迁移影响较大;随着地表温度的升高,管道上方土体的融沉速率略大于管道融沉速率;伴随着融化圈的不断扩大,管道附近土体受较小应力作用范围大,容易发生不均匀冻胀。  相似文献   

8.
埋地热油管道通过永冻地带时,会导致土壤解冻,进而导致管道沉陷和土壤物性参数变化。分析管道周围土壤融化圈变化对管道系统的设计、施工和管理是必需的。考虑热油管道对其周围土壤的影响和半无穷大土壤的传热,提出了描述永冻地区土壤融化圈变化的数学模型。通过一定的数学处理得到了计算融化圈的特征线方程,并采用差分法进行求解特征线方程,获得了满意的结果。计算分析表明,这一方法是可行的。  相似文献   

9.
直埋管道的热力分析   总被引:3,自引:0,他引:3  
为了对直埋管道保温层及其土壤邻域的温度场进行较精确的分析 ,采用保形映射、分离变量和边界离散法对地下直埋管道的温度场进行分析 ,得到了级数形式的解。其中确定级数项系数的边界离散法适于解决某些可分离变量的非正交问题。对工程实例的计算表明 ,在直埋管道保温层及其周围土壤邻域的温度场计算方面 ,使用边界离散法得到的结果更加精确可靠  相似文献   

10.
埋地热油管道稳定运行条件下热力影响区的确定   总被引:3,自引:0,他引:3  
建立了埋地热油管道热力影响区的数学模型 ,并用有限元法进行了求解。在此基础上 ,对地温、管内油温、管道直径、管道埋深和土壤导热系数等参数与管道水平方向热力影响范围的关系进行了定量分析 ,分别计算了直径为 4 2 6 ,72 0mm的管道在地温为 2 2 ,15 ,8℃条件下水平方向的热力影响范围。结果表明 ,在其他条件相同时 ,地温越低、管道直径越大或者油温越高 ,管道水平方向热力影响范围越大。在热油管道通常的埋深范围 (1.2~ 1.8m)内 ,埋深变化时 ,水平方向热力影响范围差别不大。计算结果与现场实测结果吻合 ,从而验证了所建模型的合理性  相似文献   

11.
热油管道停输过程中土壤温度变化规律研究   总被引:2,自引:0,他引:2  
由于热油管道的计划检修和事故抢修都在管线停输情况下进行 ,停输后 ,管内存油油温不断下降 ,存油黏度随油温下降而增大 ,存油黏度上升到一定值后 ,会给管道再启动带来极大的困难 ,甚至会造成凝管事故 .为此 ,为了确保安全经济地输油 ,研究了管路停输后的管内油品及周围土壤温度场的变化规律 ,确定允许停输时间 .根据热油管道停输后油品和管道周围土壤的热力变化工况 ,提出了土壤温度场传热定解问题 ,并通过运用数学分析法 (保角变换、拉普拉斯变换 )对其进行数学求解 ,得出土壤温度场的解析式 .该解析式的计算值比由源汇法及当量环法所得到的解析式的计算值更接近于实际测量值 .编制了相应的软件 ,为更合理地确定在不同季节安全停输时间提供了科学计算依据  相似文献   

12.
通过对冻土区管道运行研究,提出针对管道安全运行的措施.采用有限容积法,得到多年冻土多孔介质水热耦合数学模型,地表面温度采用随年周期性变化条件,应用SIMPLER算法对模型进行数值求解.通过对无保温层和有相同厚度两种保温材质的管道在春季、夏季和冬季的土壤温度场进行数值模拟,显示在地表温度波动的条件下,热流密度随土壤温度波动呈现周期性变化.在长期运行管道中,无保温措施的管道周围冻土融化剧烈,管壁热流密度大且振幅波动大.使用厚度为40mm的两种保温材料中,40 mm聚氨酯保温效果较好.冻土区运行管道应加敷导热系数较小的保温材料,可极大降低融化深度,保护管道安全运行.  相似文献   

13.
塔河油田重质原油外输管道安全输量分析   总被引:1,自引:1,他引:0  
随着投用时间的增长和产量的变化,塔河油田原油管道在生产运行过程中会处在低输量的状态下。由于环境温度变化较大,所输油品凝点黏度较高等因素,重油管道在低输量条件下有可能会陷入不稳定工作区甚至发生凝管停输等危险。调研了原油管道安全输量的相关文献,针对塔河油田塔雅管线的实际运行状况,考虑了管道运行过程中摩擦热的影响,建立了管线运行时的平衡方程式。运用逐步搜索法,通过输量和终点温度的关系得到了热力学最小输量;通过输量和沿程摩阻的关系得到了水力学最小安全输量。综合得到的输量结果,进行了规律性分析,并针对塔雅管线的运行,提出了建议。  相似文献   

14.
饱和含水土壤埋地原油管道冬季停输温降   总被引:4,自引:0,他引:4  
建立了饱和含水土壤埋地原油管道在低于冰点环境温度下的停输流动和传热模型,该模型不仅考虑土壤水分结冰和管内原油凝固相变过程与初始温度场和流场的影响,而且考虑了水分在土壤多孔介质中和管内原油的自然对流。通过数值模拟,获得了停输期间温度场、流场以及土壤水分结冰界面和管道中原油凝固界面的分布情况。结果表明,停输期间越靠近管壁正上方的土壤,其温度梯度越大;受温度分布的影响,土壤水分和管内原油产生沿y轴对称线自下而上的自然对流;土壤水分结冰界面和管道中原油凝固界面随停输时间向埋深方向推进,管道顶部土壤中的结冰界面推进速度较远离管道土壤中的结冰界面缓慢,管内原油凝固界面也向埋深方向偏移。  相似文献   

15.
海底热油管道的悬空段由于没有周围泥沙的保温蓄热作用,停输之后管内温降比埋入海底泥沙中的管段快得多,故而其温降成为停输过程的关键。针对海底管线悬空段的热力特性,考虑原油凝固潜热对停输温降的影响,利用CFD软件,对其停输温降过程进行数值模拟。分析温降变化规律、不同海水温度对温降的影响,从而确定最佳停输时间,为海底热油管道制定再启动方案提供理论依据。  相似文献   

16.
综合采用有限容积法、有限差分法、Monte Carlo算法和POD算法建立埋地热油管道沿线油温的随机数值模拟算法,使用Sobol全局敏感性指标进行敏感性分析,综合评价出站油温、流量、压力、埋深、埋深处自然地温、土壤导热系数、油品黏度和密度的随机波动对管道沿线油温波动的影响。计算结果表明:进站油温模拟结果与现场油温均值偏差在0.1℃以内,标准差的偏差为0.006~0.023℃;出站油温、流量、埋深处地温和油品黏度4个参数的不确定性对四堡进站油温波动的敏感性指标之和为77.44%,河西站的该指标为80.86%,进站温度的随机数值模拟中主要考虑这4个参数的不确定性即可。  相似文献   

17.
原油差温顺序输送管道温度场的数值模拟研究   总被引:1,自引:0,他引:1  
原油差温顺序输送管道的温度场不同于输送单种原油的热油管道,探明其规律有助于管道的设计和运行方案的制定.建立了非稳态传热的数学模型,采用有限容积法和热力特征线法相结合的数值算法进行了求解.用国内某差温顺序输送原油管道的现场实测数据对编制的计算程序进行了检验.受原油种类和出站温度交替变化的影响,油流温度场和土壤温度场均呈现出周期性变化的特点;不同位置温度的变化周期相同,但可能存在滞后时间;停输时机不同,管道的安全停输时间可能不同.  相似文献   

18.
通过热模拟试验机研究了V-N微合金钢过冷奥氏体动态连续冷却相变行为,设计了V-N微合金化X80抗大变形管线钢的轧制与冷却工艺参数并分析了组织和力学性能的关系.结果表明,动态CCT曲线出现高温转变区和中温转变区分离的现象,转变温度范围分别是637~728℃和441~601℃,当冷速为10~20℃/s时,形成针状铁素体为主的组织.V-N微合金化管线钢组织以多边形铁素体和针状铁素体为主,屈服强度、抗拉强度、均匀延伸率和-20℃夏比冲击功分别为603MPa,724MPa,11.1%和214J,满足API Spec 5L对X80管线钢的力学性能要求,同时具有好的强塑性匹配.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号