首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophosphorylation sites on the epidermal growth factor receptor   总被引:10,自引:0,他引:10  
J Downward  P Parker  M D Waterfield 《Nature》1984,311(5985):483-485
The epidermal growth factor (EGF) receptor is a tyrosine-specific protein kinase with autophosphorylating activity. A 300 amino acid-long region of the receptor's cytoplasmic domain matches (35-90% homology) sequences of transforming proteins from the src family and includes a putative nucleotide binding site. Several of the src transforming proteins have tyrosine kinase activity, but v-erb-B, which appears to be a truncated EGF receptor, is virtually identical to the receptor over this region and yet lacks detectable kinase activity. To locate possible acceptor sites in the v-erb-B protein, we have mapped these sites in the human EGF receptor. We report here that three tyrosine sites near the C-terminus are phosphorylated in vitro. In intact cells, we find that EGF stimulates phosphorylation of several sites, the tyrosine 14 residues from the C-terminus being modified the most extensively. The equivalent site is absent in the v-erb-B protein of avian erythroblastosis virus (AEV) and may influence tyrosine kinase activity.  相似文献   

2.
Epidermal growth factor (EGF), through interaction with specific cell surface receptors, generates a pleiotropic response that, by a poorly defined mechanism, can induce proliferation of target cells. Subversion of the EGF mitogenic signal through expression of a truncated receptor may be involved in transformation by the avian erythroblastosis virus (AEV) oncogene v-erb-B, suggesting that similar EGF receptor defects may be found in human neoplasias. Overexpression of EGF receptors has been reported on the epidermoid carcinoma cell line A431, in various primary brain tumours and in squamous carcinomas. In A431 cells the receptor gene is amplified. Here we show that 4 of 10 primary brain tumours of glial origin which express levels of EGF receptors that are higher than normal also have amplified EGF receptor genes. Amplified receptor genes were not detected in the other brain tumours examined. Further analysis of EGF receptor defects may show that such altered expression and amplification is a particular feature of certain human tumours.  相似文献   

3.
The complete 1,210-amino acid sequence of the human epidermal growth factor (EGF) receptor precursor, deduced from cDNA clones derived from placental and A431 carcinoma cells, reveals close similarity between the entire predicted v-erb-B mRNA oncogene product and the receptor transmembrane and cytoplasmic domains. A single transmembrane region of 23 amino acids separates the extracellular EGF binding and cytoplasmic domains. The receptor gene is amplified and apparently rearranged in A431 cells, generating a truncated 2.8-kilobase mRNA which encodes only the extracellular EGF binding domain.  相似文献   

4.
The interaction of steroids with their nuclear receptors induces a cascade of regulatory events that results from the activation of specific sets of genes by the hormone/receptor complex. Steroids, either acting alone or possibly synergistically with other growth factors, can influence the DNA synthesis and proliferation of specific target cells, initiate developmental pathways and activate expression of the differentiated phenotype. Moreover, steroid hormones have been implicated in abnormal growth regulation both in tumours and tumour-derived cell lines. The identification of complementary DNAs encoding the human glucocorticoid receptor (hGR) predicts two protein forms (alpha and beta; 777 and 742 amino acids long, respectively) which differ at their carboxy termini. We report here that both forms of the receptor are related, with respect to their domain structure, to the v-erb-A oncogene product of avian erythroblastosis virus (AEV), which suggests that steroid receptor genes and the c-erb-A proto-oncogene are derived from a common primordial regulatory gene. Therefore, oncogenicity by AEV may result, in part, from the inappropriate activity of a truncated steroid receptor or a related regulatory molecule encoded by v-erb-A. This suggests a mechanism by which transacting factors may facilitate transformation. We also identify a short region of hGR that is homologous with the Drosophila homoeotic proteins encoded by Antennapedia and fushi tarazu.  相似文献   

5.
6.
M J Hayman  H Beug 《Nature》1984,309(5967):460-462
Avian erythroblastosis virus (AEV) induces both erythroblastosis and fibrosarcoma in chickens. The viral oncogene responsible for these diseases, erb, is divided into two regions, erb-A and erb-B, although recent evidence suggests that it is primarily the erb-B gene product that is responsible for the transforming activity. The erb-B gene product has been reported previously to be a membrane glycoprotein of 68,000 molecular weight (MW), gp68erb -B. However, we show here that gp68erb -B is an intracellular precursor which is modified further to a 74,000 MW protein, gp74erb -B. By the criteria of resistance to digestion with endoglycosidase H, subcellular fractionation and inhibition of biosynthesis by the ionophore monensin, gp74erb -B appears to be located at the cell surface. Recently, a comparison of the erb-B sequence with that of the epidermal growth factor (EGF) receptor has shown that these two genes are highly homologous, and that erb-B appears to represent a truncated form of this growth factor. In light of these data the identification of gp74erb -B at the plasma membrane suggests that this may be the functionally important form of the erb-B gene product.  相似文献   

7.
A role for proto-oncogenes in the regulation and modulation of cell proliferation has been suggested by the findings that the B-chain of platelet-derived growth factor (PDGF) is encoded by the proto-oncogene sis and that the erb-B oncogene product is a truncated form of the epidermal growth factor (EGF) receptor. Furthermore, the product of the proto-oncogene fms (c-fms) may be related or identical to the receptor for macrophage colony-stimulating factor (CSF-1). v-fms is the transforming gene of the McDonough strain of feline sarcoma virus (SM-FeSV) and belongs to the family of src-related oncogenes which have tyrosine-specific kinase activity. Furthermore, nucleotide sequence analysis of the v-fms gene product revealed topological properties of a cell-surface receptor protein. To elucidate the features involved in the conversion of a normal cell-surface receptor gene into an oncogenic one, we have now determined the complete nucleotide sequence of a human c-fms complementary DNA. The 972-amino-acid c-fms protein has an extracellular domain, a membrane-spanning region, and a cytoplasmic tyrosine protein kinase domain. Comparison of the feline v-fms and human c-fms sequences reveals that the proteins share extensive homology but have different carboxyl termini.  相似文献   

8.
T Hunter  N Ling  J A Cooper 《Nature》1984,311(5985):480-483
The receptor for epidermal growth factor (EGF) is a 170,000-180,000 molecular weight single-chain glycoprotein of 1,186 amino acids. Its sequence suggests that it has an external EGF-binding domain, formed by the NH2-terminal 621 amino acids, linked to a cytoplasmic region by a single membrane-spanning segment. In the cytoplasmic portion, starting 50 residues from the membrane, there is a 250-residue stretch similar to the catalytic domain of the src gene family of retroviral tyrosine protein kinases, and, indeed, a tyrosine-specific protein kinase activity intrinsic to the receptor is stimulated when EGF is bound. Increased tyrosine phosphorylation of cellular proteins, detected in A431 cells following EGF binding, may be important in the mitogenic signal pathway. Tumour promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), counteract this increase, as well as causing loss of a high affinity class of EGF binding sites. The major receptor for TPA has been identified as the serine/threonine-specific Ca2+/phospholipid-dependent diacylglycerol-activated protein kinase, protein kinase C. By substituting for diacylglycerol, TPA stimulates protein kinase C. Protein kinase C phosphorylates purified EGF receptor at specific sites, and this reduces EGF-stimulated tyrosine protein kinase activity. TPA treatment of A431 cells increases serine and threonine phosphorylation of the EGF receptor at the same sites, which suggests that the reduction of EGF receptor kinase activity in TPA-treated cells is a consequence of the receptor's phosphorylation by the kinase. We have attempted to identify these phosphorylation sites and show here that protein kinase C phosphorylates threonine 654 in the human EGF receptor. This threonine is in a very basic sequence nine residues from the cytoplasmic face of the plasma membrane in the region before the protein kinase domain; it is thus in a position to modulate signalling between this internal domain and the external EGF-binding domain.  相似文献   

9.
H Riedel  T J Dull  J Schlessinger  A Ullrich 《Nature》1986,324(6092):68-70
The cell surface receptors for insulin and epidermal growth factor (EGF) appear to share a common evolutionary origin, as suggested by structural similarity of cysteine-rich regions in their extracellular domains and a highly conserved tyrosine-specific protein kinase domain. Only minor similarity is found outside this catalytic domain, as expected for receptors that have different ligand specificities and generate different biological signals. The EGF receptor is a single polypeptide chain but the insulin receptor consists of distinct alpha and beta subunits that function as an alpha 2 beta 2 heterotetrameric receptor complex. Provoked by this major structural difference in two receptors that carry out parallel functions, we have designed a chimaeric receptor molecule comprising the extracellular portion of the insulin receptor joined to the transmembrane and intracellular domains of the EGF receptor to investigate whether one ligand will activate the tyrosine kinase domain of the receptor for the other ligand. We show here that the EGF receptor kinase domain of the chimaeric protein, expressed transiently in simian cells, is activated by insulin binding. This strongly suggests that insulin and EGF receptors employ closely related or identical mechanisms for signal transduction across the plasma membrane.  相似文献   

10.
The neu oncogene encodes an epidermal growth factor receptor-related protein   总被引:103,自引:0,他引:103  
C I Bargmann  M C Hung  R A Weinberg 《Nature》1986,319(6050):226-230
The neu oncogene is repeatedly activated in neuro- and glioblastomas derived by transplacental mutagenesis of the BDIX strain of rat with ethylnitrosourea. Foci induced by the DNAs from such tumours on NIH 3T3 cells contain the neu oncogene and an associated phosphoprotein of relative molecular mass 185,000 (p185). Previous work has shown that the neu gene is related to, but distinct from, the gene encoding the EGF receptor (c-erb-B). Here we describe a neu complementary DNA clone isolated from a cell line transformed by this oncogene; the clone has biological activity in a focus-forming assay. The nucleotide sequence of this clone predicts a 1,260-amino-acid transmembrane protein product similar in overall structure to the EGF receptor. We found that 50% of the predicted amino acids of neu and the EGF receptor are identical; greater than 80% of the amino acids in the tyrosine kinase domain are identical. Our results suggest strongly that the neu gene encodes the receptor for an as yet unidentified growth factor.  相似文献   

11.
12.
Vaccinia virus encodes VGF, an early protein of relative molecular mass 19,000 (19K) which, from amino-acid residues 45 to 85, is homologous in 19 residues to epidermal growth factor (EGF), and transforming growth factor-alpha (TGF-alpha). The conserved sequence includes a region of high homology (6 out of 10 amino acids) from residues 71 to 80, corresponding to the third disulphide loop of both EGF and TGF-alpha. This region has recently been shown to contain a binding region of TGF-alpha for the EGF receptor, and this raises the question of whether vaccinia virus utilizes the EGF receptor in order to bind to and infect cells. We now show that occupancy of the EGF receptor inhibits vaccinia virus infection. Inhibition is observed in a dose-dependent fashion by pre-treatment with either EGF or synthetic decapeptide antagonists of EGF's mitogenic activity which correspond to the sequence of the third disulphide loop of VGF or TGF-alpha. The relative ability of the peptides to inhibit vaccinia virus infection parallels their binding affinity to the EGF receptor.  相似文献   

13.
J P Brown  D R Twardzik  H Marquardt  G J Todaro 《Nature》1985,313(6002):491-492
Epidermal growth factor (EGF) and transforming growth factor type I (TGF) are polypeptides of 53 and 50 amino acid residues, respectively. Both bind to EGF receptor, a 1,200-residue transmembranous glycoprotein, leading to phosphorylation of the receptor, enhancement of its tyrosine-specific kinase activity and ultimately to stimulation of cell growth. We report here that a 140-residue polypeptide encoded by one of the early genes of vaccinia virus (VV) is related closely to EGF and TGF. The presence of putative signal and transmembranous sequences further suggests that the viral protein might be an integral membrane protein, but that, as in the case of EGF itself, the membrane-associated form may be the precursor of a soluble growth factor. Production of EGF-like growth factors by virally infected cells could account for the proliferative diseases associated with members of the poxvirus family such as Shope fibroma virus, Yaba tumour virus, and molluscum contagiosum virus (MCV).  相似文献   

14.
15.
16.
M Chinkers  S Cohen 《Nature》1981,290(5806):516-519
Transformation by several RNA tumour viruses seems to be mediated by virally coded protein kinases which specifically phosphorylate tyrosine. A tyrosine-specific protein kinase also seems to be involved in the mitogenic action of epidermal growth factor (EGF). This EGF-stimulated kinase activity is closely associated with the EGF receptor, with which it copurifies during EGF-affinity chromatography. Because both the virus- and EGF-stimulated tyrosine kinases may be involved in stimulation of cell growth, and because the viral kinases may be antigenically related to normal cell proteins, we examined the interaction of antibodies to viral tyrosine kinases with the affinity-purified EGF receptor-kinase preparation. We report here that the receptor-kinase specifically phosphorylates antibodies directed against the transforming protein kinase pp60src of Rous sarcoma virus. However, none of these antibodies, including those which cross-react with the normal cellular homologue of pp60src (pp60sarc), precipitate the receptor-kinase. These results suggest that the EGF receptor-kinase is related to, but probably not identical with, pp60sarc.  相似文献   

17.
Both murine and human epidermal growth factors (EGFs) are known to cause precocious opening of the eyelids in newborn mice. Another set of peptides that are structurally and functionally homologous to murine and human EGFs are the murine and human type-alpha transforming growth factors (TGF-alpha s), TGF-alpha s have been found in many cancer cells and it has been suggested that their autocrine action may play an important part in malignant transformation. In several in vitro systems murine and human TGF-alpha s are functionally interchangeable with murine and human EGFs. However, the in vivo activity of the TGF-alpha s has not been characterized, as only small amounts of these peptides were available until recently. The cloning of the gene for human TGF-alpha and its expression in Escherichia coli now allow us to demonstrate that human TGF-alpha is as active as murine EGF in promoting eyelid opening in newborn mice. Furthermore, we show in a dose-dependent eyelid opening assay that human EGF is as potent as its murine homologue with respect to this biological property.  相似文献   

18.
P75 interacts with the Nogo receptor as a co-receptor for Nogo,MAG and OMgp   总被引:96,自引:0,他引:96  
Wang KC  Kim JA  Sivasankaran R  Segal R  He Z 《Nature》2002,420(6911):74-78
In inhibiting neurite outgrowth, several myelin components, including the extracellular domain of Nogo-A (Nogo-66), oligodendrocyte myelin glycoprotein (OMgp) and myelin-associated glycoprotein (MAG), exert their effects through the same Nogo receptor (NgR). The glycosyl phosphatidylinositol (GPI)-anchored nature of NgR indicates the requirement for additional transmembrane protein(s) to transduce the inhibitory signals into the interior of responding neurons. Here, we demonstrate that p75, a transmembrane protein known to be a receptor for the neurotrophin family of growth factors, specifically interacts with NgR. p75 is required for NgR-mediated signalling, as neurons from p75 knockout mice are no longer responsive to myelin and to each of the known NgR ligands. Blocking the p75-NgR interaction also reduces the activities of these inhibitors. Moreover, a truncated p75 protein lacking the intracellular domain, when overexpressed in primary neurons, attenuates the same set of inhibitory activities, suggesting that p75 is a signal transducer of the NgR-p75 receptor complex. Thus, interfering with p75 and its downstream signalling pathways may allow lesioned axons to overcome most of the inhibitory activities associated with central nervous system myelin.  相似文献   

19.
B Royer-Pokora  S Grieser  H Beug  T Graf 《Nature》1979,282(5740):750-752
Avian erythroblastosis virus (AEV) induces a fatal erythroblastosis within 2 weeks of intravenous injection in chicks in virtually 100% of cases. In chicks injected intramuscularly, sarcomas frequently develop at the site of injection before the animals die from erythroblastosis. In vitro, AEV transforms both erythroblasts, derived from bone marrow cultures, and fibroblasts. These effects have been shown to be a general property of AEV and not of separate leukaemia- and sarcoma-inducing forms of the virus. AEV is defective for replication and can be propagated only in the prewence of helper virus. Its transformation specificity is independent of the helper virus used. It is not clear whether AEV has two different genes controlling transformation of the two types of target cell or whether it has only one gene coding for both. To investigate this question, we looked for mutants of AEV unable to transform one of the two types of target cell. We now describe such a mutant, which is defective for erythroblast transformation but which can still transform fibroblasts.  相似文献   

20.
AtCRE1 is known to be a cytokinin receptor inArabidopsis. The AtCRE1 protein contains CHASE domain at the N-terminal part, followed by a transmitter (histidine kinase) domain and two receiver domains. The N-terminal CHASE domain of AtCRE1 contains putative recognition sites for cytokinin. Five CHASE domains containing proteins were found in rice, OsCRLla, OsCRLlb, OsCRL2, OsCRL3, and OsCRL4. OsCRL1a, OsCRL1b, OsCRL2 and OsCRL3 contain the four domains existing in CRE1, whereas OsCRL4 only contains the CHASE domain and a putative Ser/Thr protein kinase domain The authors cloned the encoding gene OsCRL4 and found that it represents a new member of the cytokinin receptor protein in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号