首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
发育于盐湖相环境的柴达木盆地西部第三系渐新统下干柴沟组是该盆地西部地区的主力烃源岩层. 在该组上段沉积有机质中检出了硅藻的特征性生物标志化合物——含25 个碳原子的高支链类异戊二烯烃(C25HBI), 该化合物的检出对于揭示区域沉积有机质发育的生物地球化学背景具有重要意义. 研究结果表明, 柴达木盆地西部地区下干柴沟组上段烃源岩中的C25HBI 碳同位素值介于-18‰到-20‰之间, 为典型硅藻生源特征. 由于沉积环境中硅藻生长在大量消耗水体溶解CO2 的同时, 必须利用无机碳酸盐碳才能维持其快速繁殖, 硅藻勃发代表了水体环境富营养、高生产率特征, 因此富重碳同位素C25HBI 在沉积有机质中的检出有可能成为该地区优质烃源层发育的标志之一. 同时, 由于硅藻发育环境水体溶解CO2处于胁迫状态, 将导致沉积有机质总体以富集13C 为特征, 可能是造成该地区第三系沉积有机质碳同位素偏重的原因之一. 作为该套烃源岩沉积有机质的生源之一, 硅藻生源高碳数正构烷烃(>n-C25)具有无碳优势分布的特点, 使得该地区高碳数正构烷烃的生源和成因复杂化,在烃源岩有机质评价时应引起重视.  相似文献   

2.
陈芃娜  王国安  韩家懋  柳晓娟  刘敏 《科学通报》2009,54(22):3512-3520
通过对贡嘎山东坡地表植被、凋落物、土壤有机质δ13C值的分析, 结果显示贡嘎山东坡地表植被、凋落物、0~5, 5~10和10~20 cm土壤有机质的δ13C值均随海拔的升高先减小后增大, 即从海拔1200~2100 m, δ13C值逐渐变小, 从2100~4500 m, δ13C值则逐渐变大. 植被、凋落物和土壤有机质δ13C值沿海拔高度的这种变化是与C3, C4植物的分布有关, C4植物仅仅生长于海拔高度低于2100 m的环境中, 而C3在所有海拔都存在. 植被、凋落物和土壤有机质三者间的δ13C有显著的正相关, 凋落物、0~5 cm层、5~10 cm层和10~20 cm土壤有机质δ13C较植被分别平均偏正0.56‰, 2.87‰, 3.04‰和3.49‰. 在综合考虑工业革命以来大气CO2浓度和δ13C值变化对植物同位素的影响后, 我们认为1.57‰可能是利用古土壤有机质δ13C进行古生态重建时应该考虑的最小修正值.  相似文献   

3.
乌江流域梯级水库中溶解无机碳及其同位素分异特征   总被引:11,自引:0,他引:11  
选择长江右岸最大支流乌江干流上三座不同时期建造的梯级水库作为研究对象, 于2006年4月、7月、10月和2007年1月按水体表层、水深20, 40, 60和80 m分别采集了三座水库的坝前水体分层水样. 分析其中水化学特征、溶解无机碳含量及其同位素组成. 水库表层水体中溶解无机碳(DIC)及其同位素(δ13CDIC)组成总体特征表现为: DIC浓度夏、秋季较低, 冬、春季较高; δ13CDIC值则相反, 夏、秋季节偏正, 冬、春季节相对偏负. 在垂直剖面上, 水体中DIC浓度随水深的增加逐渐上升, 而δ13CDIC随水体深度增加而偏负. 各水库的溶解无机碳同位素组成与天然河流中的差异较大, 而接近自然湖泊情况. 另外, 通过调查不同拦截时间的水库, 发现在水库的上层水体中, δ13CDIC随着水库库龄的增长而偏负, 水库的营养水平随着库龄的增长而逐渐增高. 上述结论表明水坝拦截后河流水化学性质发生了改变, 蓄水河流趋向于向湖沼化方向发展; 溶解无机碳同位素组成分异在一定程度上可用于示踪水库的演化过程.  相似文献   

4.
“05-06”西江特大洪水对河流碳输出通量的影响   总被引:4,自引:0,他引:4  
孙会国  汉景泰  张淑荣  吕喜玺 《科学通报》2006,51(23):2773-2779
2005年6月西江(珠江主干流)发生了一次重现期近200年的特大洪水事件. 在此洪水过程中, 通过系列采样, 对河水总悬浮物(TSS)、溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒有机碳(POC)进行实验室测定, 对洪水水体的碳含量及其变化特征作了讨论. 这些参数反映了流域地表和地下径流在洪水过程中的变化. 洪水事件对西江POC通量的估算影响最大, 其次为DOC, 而对DIC影响较小. 通过分别对西江全年及洪水期(2005年6月21~28日)的碳通量进行估算, 结果表明洪水期DIC, DOC和POC的通量分别为1.52×106, 0.24×106, 0.54×106 g·km−2·a−1, 分别占全年碳通量的14.87%, 24.75%和44.89%, 洪水期间碳输出量对河流碳输出总量及构成方式有不可忽略的贡献, 研究洪水事件的碳通量对于准确认识洪水频发河流的碳通量有着重要的意义.  相似文献   

5.
筑坝对喀斯特河流水体溶解性无机碳地球化学行为的影响   总被引:3,自引:0,他引:3  
彭希  刘丛强  王宝利  赵颜创 《科学通报》2014,59(4-5):366-373
为探究筑坝对河流溶解性无机碳(DIC)地球化学行为的影响, 对乌江流域的水库及河流进行了半月1次为期1年的现场监测和取样分析. 相对于入库河流, 库区叶绿素a浓度平均提高了5.6倍, 库区表层DIC中HCO3-和溶解CO2比重下降, CO32-比重和DIC碳同位素值(δ13CDIC)上升, 而水库下泄水中DIC各组分却表现出与库区表层相反的地球化学行为. δ13CDIC变化范围为-10.2‰~2.5‰, 表明碳酸盐岩风化、光合作用及呼吸作用共同控制了δ13CDIC的变化. 河流筑坝后浮游植物生物活动增强, 显著影响了原始河流DIC的地球化学行为, δ13CDIC可以用来判断这种变化过程. 河流-水库水体高频率监测对于准确评估筑坝河流CO2释放通量和明确碳循环过程中的源汇关系是非常必要的.  相似文献   

6.
杨伟锋  黄奕普  陈敏  邱雨生  彭安国  张磊 《科学通报》2009,54(11):1579-1584
对南大洋及南海上层水体210Po/210Pb不平衡进行了研究, 发现表层水体210Po亏损, 次表层或中层水体210Po过剩, 且颗粒态210Po比活度与颗粒有机碳(POC)之间存在良好的正相关关系, 证实210Po相对于其母体210Pb的亏损与过剩可示踪颗粒有机物的输出与再矿化. 次表层水体中δ13C的减小及δ15N的增大等证据均支持210Po的过剩缘自颗粒有机物的再矿化. 根据箱式模型计算得南大洋和南海表层水体POC输出通量分别为1.2和2.3 mmol C·m-2·d-1, 次表层或中层水体210Po再矿化通量分别为0.062和0.566 Bq·m-2·d-1, 相应的再循环效率分别为52%±26%和119%±52%, 由此得到次表层或中层水体POC的再矿化通量分别为0.6和2.7 mmol C·m-2·d-1. 本研究的结果表明210Po/210Pb不平衡不仅可示踪颗粒有机物的输出, 亦可示踪其再矿化.  相似文献   

7.
蔡德陵 《科学通报》2001,46(Z1):16-23
利用1998年5月航次中所采集的南黄海海域7个断面、67个站位、5个层次的284个悬浮体样品和64个底质沉积物样品, 分析测定了样品的悬浮体浓度和悬浮体与底质沉积物中的有机碳稳定同位素组成, 以研究悬浮体和沉积物的物质来源和运移过程. 由悬浮体浓度和颗粒有机碳δ 13C值的分布特征分析得出了南黄海沉积物搬运的主要格局. 由此格局可以认定, 在陆源物质向南黄海中部深水区的输送过程中底层起着比表层更为重要的作用. 黄海环流是决定南黄海沉积物搬运格局的一个重要控制因素. 由沉积有机质的碳同位素信号证实, 山东水下三角洲高沉积速率沉积物的主要物质来源是现代黄河物质. 在南黄海深水区的陆源沉积物主要来自废黄河物质和现代黄河物质, 现代长江物质所占比例相对较少. 来自朝鲜半岛的陆源物质其数量和影响范围都是有限的. 由悬浮体和碳稳定同位素得出的结论得到了另一个独立的物源指示剂——多环芳烃的进一步证明.  相似文献   

8.
对墨西哥湾北部水深约540 m的上陆坡GC185区(GC-F样品)和水深约2200 m的下陆坡AC645区(AC-E样品)冷泉碳酸盐岩中的脂肪酸及其单体化合物的δ13C进行了分析. 在AC-E和GC-F冷泉碳酸盐岩样品中检测到了30多种脂肪酸化合物, 均以主峰碳为C16的低碳数(<C20)脂肪酸为主, 具偶碳优势, 主要包括正构脂肪酸、异构(i-)/反异构(ai-)脂肪酸以及带支链的(iso/anteiso)奇碳数脂肪酸. 其中n-C12:0, n-C13:0, i-C14:0和n-C14:0具有明显偏低的δ13C值(39.99‰~32.36‰), 可能来源于冷泉生物. n-C18:2和C18:19具有相同的碳同位素值, 可能来源于冷泉渗漏区贝氏硫细菌属/辫硫菌属. 支链奇碳数脂肪酸(iso/anteiso-C13~C17)具有特别负的δ13C值(63.95‰~44.17‰), 明显不同于其他类别脂肪酸的碳同位素值, 推断这类化合物是海底渗漏区甲烷厌氧氧化过程中的硫酸盐还原细菌生命活动的产物.  相似文献   

9.
给出了雨季(7月)鼎湖山季风常绿阔叶林两个土壤剖面(DHLS和DHS)中CO2气体的碳同位素组成和更新特征, 探讨了土壤CO2气体的来源比例. 结果表明: 该林区土壤CO2气体含量变化范围为6120~18718 μL•L−1, 随深度增加而增大, 75 cm以下则逐渐减少. 在DHLS剖面, 土壤CO2气体的δ13C值的变化范围为−24.71‰~−24.03‰, 与同层位气体含量呈显著负相关(R2=0.91), 模拟结果显示该剖面中的CO2气体主要来源于根系呼吸作用(>80%); 而在DHS剖面, 土壤CO2气体的δ13C值变化范围为−25.19‰~−22.82‰, 模拟结果显示除表层(20 cm)90%来源于根系呼吸作用外, 深部(40~105 cm)主要来源于微生物的分解作用(51%~94%). 14C年龄显示, DHLS和DHS剖面中土壤CO2气体中的碳均为现代碳, 14C年龄之间最大差值分别为8和14个月, DHLS剖面中土壤CO2气体更新速率较快. 在DHLS和DHS剖面中, 土壤CO2气体?14C值的变化范围分别为100.0‰~107.2‰和102.5‰~112.1‰, 高于现代大气CO2和同层位土壤有机碳的?14C值, 土壤CO2气体可能是大气核爆14C的一个重要储库.  相似文献   

10.
由于植物碳同位素综合反映了植物光合作用过程中C, H2O交换的信息, 因此从理论上讲它们可以作为植物功能特征的潜在指标. 尽管前人的调查已经对这一假设进行了验证, 但相关的证据还较少, 我们需要进行更多、更广泛的调查来证实这一假设. 本文通过对湿润的寒温带气候区中国长白山不同功能群植物叶片(乔木、灌木与草本; 常绿植物与落叶植物; 一年生草本、二年生草本与多年生草本)的碳同位素测定, 发现不同生活型植物的碳同位素组成有显著差别, 从而进一步证实了植物δ13C值可以作为划分植物功能群潜在指标的假设. 另外, 我们的结果还指示不同生活型植物的水分利用效率也存在明显差别. 不同功能群植物的δ13C值以及碳同位素指示的水分利用效率呈以下趋势: 草本<灌木<乔木. 同一生活型中, 常绿灌木的δ13C值和以及它指示的水分利用效率显著大于落叶灌木. 不同寿命的草本植物δ13C值也具有显著的差异, 一年生草本>二年生草本>多年生草本, 与前人在沙漠地区研究的结果(一年生植物的δ13C值低于多年生植物)不一致, 这表明不同寿命草本植物之间的δ13C值和水分利用效率的变化趋势可能与当地水分条件有关.  相似文献   

11.
贵州七星洞洞穴系统中锶同位素特征及其意义   总被引:3,自引:0,他引:3  
系统分析了贵州都匀七星洞(QXD)洞穴系统中各组分(土壤水、滴水及其化学沉积物与土壤、基岩等)的锶同位素组成(87Sr/86Sr), 结果显示, 各组分的87Sr/86Sr 比值特征差异显著. QXD-1#, 4#和9#滴水87Sr/86Sr 平均值分别为0.709568, 0.709139 和 0.708761, 其比值差异可能是由不同滴水点相应的渗流水运移路径、滞留时间和其他水文地质过程等因素不同所造成的. 两端员模式计算表明, 基岩(碳酸盐岩)溶解对1#, 4#和9#滴水的贡献率分别为40.8%, 57.6%和72.4%. 基岩溶解贡献率与之前研究的各滴水δ13CDIC 值没有正相关关系(基岩δ13C 值为1.8‰), 相反, 基岩贡献率相对较低的1#,其δ13CDIC 值最重(平均值?4.5‰), 而贡献率相对较高的9#, 其δ 13CDIC 值最轻(平均值?9.3‰), QXD-4#基岩贡献率高于1#低于9#, 其δ13CDIC 平均值(?8.6‰)却低于1#高于9#. 由此可见, 基岩的溶解对滴水稳定碳同位素的影响不是该洞穴不同滴水点间碳同位素巨大差异的主要原因, 水体运移路径中, 可能前期方解石沉积(PCP)过程的发生才是滴水δ13CDIC 偏重的主导因素. 此外, 本研究还发现, 1#和4#滴水对应次生化学沉积物87Sr/86Sr 比值特征主要反映了上覆土壤系统(土壤水)与基岩溶解相对贡献变化,利用本地洞穴次生化学沉积物87Sr/86Sr 指标表征上覆土壤风化强度及其变化是可行的,进而反映本区域季风气候信息.  相似文献   

12.
茅昌平  陈骏  袁旭音  杨忠芳  季峻峰 《科学通报》2011,56(31):2591-2598
对长江悬浮物的物源进行示踪研究是认识长江演化、亚洲季风演化和青藏高原隆升的途径之一. 通过对长江下游南京段悬浮物的季节性采样, 系统地分析了悬浮物的Sr-Nd同位素组成. 结果显示, 长江下游悬浮物中酸不溶物的87Sr/86Sr值在0.725352~0.738128 间变化,εNd(0)值的范围为-10.55~-12.29, Sr-Nd 同位素组成呈现出明显的季节性变化, 夏季洪水期相对于非洪水季节有较低的87Sr/86Sr值和较高的εNdN(0)值. 研究表明长江下游悬浮物Sr-Nd 同位素组成的季节性变化主要受物源变化控制. 在季风气候影响下, 长江上游地区物理剥蚀强度的变化是造成下游悬浮物Sr-Nd 同位素组成季节性变化的主要原因. 这一发现,为进一步应用Sr-Nd 同位素方法来研究地质历史时期长江沉积记录提供了重要的参考. 同时, 计算得出长江悬浮物酸不溶物Sr 和Nd 同位素组成的入海特征值为87Sr/86Sr= 0.728254,εNd(0)= -11.26.  相似文献   

13.
古元古代冰期事件: 山西五台地区滹沱群的碳同位素证据   总被引:1,自引:0,他引:1  
孔凡凡  袁训来  周传明 《科学通报》2011,56(32):2699-2707
古元古代全球性冰期(~2.3 Ga)可能是地质历史时期发育最早的雪球事件. 华北地区广泛出露古元古代轻微变质沉积岩, 但缺乏古元古代冰期事件的沉积学证据. 研究了山西五台地区古元古代滹沱群(2.5~2.2 Ga)稳定碳同位素组成, 结果显示δ13C 值在垂向地层序列中的变化有明显的规律性: 豆村亚群大石岭组碳同位素高正值(δ13Ccarb 值3.2‰~1.0‰); 东冶亚群纹山组-大关洞组中部碳同位素值的降低(δ13Ccarb 值2.0‰~-1.2‰), 伴随着叠层石从繁盛到衰落的过程; 至大关洞组上部及其与槐荫村组界线附近碳同位素发生显著负漂移(δ13Ccarb值1.4‰~-3.3‰), 该段地层叠层石不发育; 在其之上的北大兴组-天蓬垴组碳同位素比值逐渐恢复到零值附近(δ13Ccarb 1.2‰~1.4‰), 叠层石迅速繁盛. 在东冶亚群建安村组-大关洞组中部出现的碳同位素负漂移可能是古元古代全球性冰期事件在我国华北地区的响应, 反映古元古代全球古气候发生了重要的变化.  相似文献   

14.
刘再华 《科学通报》2011,56(26):2209-2211
风化碳汇概念被提出至今已有18 年(Berner, 1992). 而今, 我们可以用最新的数据对其地质含义进行重新评估. 近来, Ryskov 等人以碳同位素的分析数据为基础认为: 在过去5000 年干旱时期的成土过程中, 俄罗斯的土壤以土壤碳酸盐的形式将大气中的CO2 固定下来, 其中黑钙土的固碳速率为2.2 kg C m-2 a-1、深栗钙土为1.13 kg C m-2 a-1、浅栗钙土为0.86 kg C m-2 a-1. 然而, 他们对数据的解释却是间接而缺乏说服力的, 因此, 其观点很可能误导读者. Dart 等人则持有相反的观点, 他们的研究表明, 澳大利亚风化层碳酸盐形成并没有吸收任何额外的CO2, 而仅是在库与库之间进行简单迁移的结果. 本文从以下两个问题对上述观点及其解释进行评述: (1) 土壤碳酸盐的成因: 硅酸盐风化和碳酸盐风化的比较; (2) 用碳同位素示踪土壤碳酸盐来源存在的问题. 得出的结论是: 土壤碳酸盐可能根本不是一个重要的大气CO2 汇, 也即是说, 碳酸盐风化成因的土壤碳酸盐没有吸收任何额外的CO2; 另一方面, 由于硅酸盐风化过程相当缓慢, 其形成的土壤碳酸盐在短时间尺度内对大气CO2 汇的能力很弱.  相似文献   

15.
刘恋  尹秋珍  吴海斌  郭正堂 《科学通报》2010,55(26):2647-2650
成壤碳酸盐碳同位素常被用于古环境研究, 而原生碳酸盐的干扰会使其碳同位素值发生改变. 为了建立判定成壤钙结核中是否存在原生碳酸盐的实验方法, 对黄土高原地区中新世黄土中23个成壤钙结核孔隙和基质部位进行了微形态鉴定和碳酸盐碳同位素测试. 结果表明, 同一个钙结核基质(B)与孔隙(A)碳酸盐碳同位素差值(δ13C(B–A))范围为−0.16‰~0.44‰, 其中基质中含原生碳酸盐的钙结核的δ13C(B-A)值范围为0.27‰~0.44‰, 大于测量误差(±0.2‰), 而不含原生碳酸盐的钙结核的δ13C(B-A)值范围为−0.16‰~0.13‰, 在测量误差之内. 由此, 得到利用碳同位素手段判断黄土钙结核中是否含有原生碳酸盐的简便方法, 将δ13C(B-A)的值在测量误差之内作为判断钙结核中不含原生碳酸盐的碳同位素标准.  相似文献   

16.
史宝光  沈平  王晓锋  郑建京 《科学通报》2013,58(5-6):479-484
经多年反复实验和改进, 建立了高真空条件下、球磨机碎样、不经水介质直接收集解析气的装置和方法, 从而最大限度地排除大气污染、粉碎热解以及经水介质集气等各种干扰因素, 使所获解析气中的烃类气体体积百分含量大幅度提高, 最高可达80%以上, 碳同位素系列可实测至δ13C113C5. 利用新建立的装置进行初步研究, 结果表明: (1) 利用烃源岩解析气的乙烷碳同位素组成判识烃源岩类型, 与应用烃源岩有机地球化学参数判识结果完全一致, 说明利用天然气的乙烷碳同位素组成作为判识母质类型的参数是可行的; (2) 利用烃源岩解析气甲烷碳同位素组成计算的烃源岩热演化程度Ro值与烃源岩实测镜质体反射率吻合极好, 证实了利用统计学方法得到的天然气甲烷碳同位素组成与热演化程度的对应关系是可靠的; (3) 首次建立了天然气气-源直接对比方法, 运用自然源岩样品解析气的实测δ13C1和实测Ro值建立的lgRo vs δ13C1表达式, 为油气勘探区进行精细油气源对比创造了条件.  相似文献   

17.
黄土高原地质历史时期原生植被类型, C3/C4植物的时空演化规律等, 一直是黄土研究中争论较多的问题, 而黄土剖面元素碳碳同位素(δ13Cec)记录可能为植被演替变化提供新的依据. 元素碳(EC)是植被不完全燃烧的产物, 其碳同位素较先体植被变化很小, 从而可利用δ13Cec记录反演植被变化. 采用化学氧化法提取黄土高原中部灵台剖面黄土-古土壤序列中的EC物质, 并进行δ13Cec分析. 结果表明, 该地区为C3, C4植物混合植被类型, 大多数时段以C3植物为主. 晚第四纪以来, 黄土高原C3, C4植物变化可能并不遵循简单的冰期-间冰期旋回变化模式, 而是呈现波动变化: L4时期C3植物逐渐增多, S3时期C3植物较多; L3~L2时期C4植物增多; S1~S0时期C3植物再次增多. 在古土壤发育时期中, S3, S1时期C3植物较多, S2和S0时期C4植物相对较多. 在黄土堆积时期中, L4和L1时期C3植物较多, L3和L2时期C4植物相对较多. 在冰期-间冰期旋回尺度上, δ13Cec揭示的植被变化与孢粉资料得到的结果较为一致; 与有机碳碳同位素(δ13Corg)所揭示的植被变化仅在末次冰期以来的时期较为一致.  相似文献   

18.
铬稳定同位素分析技术及其在水污染研究中的应用   总被引:3,自引:0,他引:3  
高含量的六价铬离子对环境与生态具有潜在的严重危害. 因此, 监测水体Cr的污染及其演化趋势具有重要的环境生态学意义. 介绍了Cr同位素原位示踪技术及其对环境水体Cr污染与演化趋势进行定量监测的原理. 在已有研究的基础上, 建立了铬同位素化学分离与纯化流程以及Cr同位素的热电离同位素质谱测定方法. 应用所建立的方法, 对湖北省某化工厂周围11个水样进行了测定. 样品的Cr 同位素特征表现为: 区域内样品的δ53Cr变化范围为-1.7‰~7.3‰、样品δ53Cr值随其与污染源之间距离的增加而呈现逐渐增大的趋势、δ53Cr值与其所代表的水体污染程度之间存在明显的函数关系. 研究结果表明, Cr同位素比值能较好地显示当地水体Cr污染的空间分布规律, 并能根据铬同位素分馏程度对水体自净能力进行定量评估.  相似文献   

19.
金刚石碳同位素组成和对比是了解克拉通大陆岩石圈地幔物质组成及其演化的窗口. 本文用二次离子质谱(SIMS)方法对产于华北克拉通(山东蒙阴和辽宁瓦房店)和扬子克拉通(湖南沅水流域)的11颗金刚石不同生长层的碳同位素组成进行了123个点高精度原位(in-situ)测试. 结果显示, 华北克拉通和扬子克拉通金刚石碳同位素组成存在一定差异; 华北克拉通金刚石早期生长“核心”碳同位素δ13C组成平均为-3.0‰(VPDB), 分布范围为-6.0‰~-2.0‰, 与全球橄榄岩型金刚石一致; 扬子克拉通金刚石早期“核心”δ13C平均为-7.4‰, 分布范围为-8.6‰~-3.0‰, 和榴辉岩型金刚石特点一致; 3个产地单颗金刚石不同生长层碳同位素变化不具有一致性, 与是否含包裹体无关, 但与金刚石是否存在溶蚀间断明显有关, 证实金刚石生长过程地幔流体碳同位素组成不均一, 碳储库(介质)不均一性对金刚石生长过程碳同位素变化的影响较分馏作用更为明显; 与此同时, 现有的测试结果显示, 华北和扬子克拉通金刚石中心-边缘生长层碳同位素变化与氮含量之间缺乏相关性, 反映我国两个克拉通金刚石生长过程中地幔流体碳和氮元素之间存在复杂的交换、地球化学环境可能相对开放. 上述结果暗示, 金刚石形成时扬子克拉通和华北克拉通地幔交代流体碳的组成及来源存在差异.  相似文献   

20.
贺兰山地区震旦系碳酸盐岩碳氧同位素分析   总被引:1,自引:0,他引:1  
对宁夏贺兰山地区出露的震旦系碳酸盐岩进行了详细的野外地质调查和碳氧同位素分析测试, 发现该地区震旦系正目观组碳酸盐岩碳同位素表现出一定的变化规律: 由北到南的几条典型剖面中δ13C值自下向上均逐渐减小, 变化范围都集中在?4.51‰~0.11‰, 最大负偏值达到了?6.88‰. 兔儿坑组中发现的宏体生物化石在华南灯影组中部出现, 从而将正目观组和兔儿坑组的形成时代限定在震旦纪. 冰川的发育导致了极端寒冷的气候, 海洋中有机质大幅降低, δ13C值出现普遍的负偏. 兔儿坑组代表了冰期的结束, 生物的复苏, 海洋中有机物含量增加. 通过与全球其他地区同期地层碳氧同位素分布的投图对比, 发现正目观组冰期沉积的形成时间可能晚于Gaskiers冰期, 研究其为探讨埃迪卡拉纪华北板块的古海洋、古地理环境和生物演化起了重要作用, 为全球同期地层碳氧同位素数据库提供了新的补充.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号