首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
2.
Specialized collagens and small leucine-rich proteoglycans (SLRPs) interact to produce the transparent corneal structure. In cornea plana, the forward convex curvature is flattened, leading to a decrease in refraction. A more severe, recessively inherited form (CNA2; MIM 217300) and a milder, dominantly inherited form (CNA1; MIM 121400) exist. CNA2 is a rare disorder with a worldwide distribution, but a high prevalence in the Finnish population. The gene mutated in CNA2 was assigned by linkage analysis to 12q (refs 4, 5), where there is a cluster of several SLRP genes. We cloned two additional SLRP genes highly expressed in cornea: KERA (encoding keratocan) in 12q and OGN (encoding osteoglycin) in 9q. Here we report mutations in KERA in 47 CNA2 patients: 46 Finnish patients are homozygous for a founder missense mutation, leading to the substitution of a highly conserved amino acid; and one American patient is homozygous for a mutation leading to a premature stop codon that truncates the KERA protein. Our data establish that mutations in KERA cause CNA2. CNA1 patients had no mutations in these proteoglycan genes.  相似文献   

3.
4.
We report here the identification of a gene associated with the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. A single locus associated with HPT-JT (HRPT2) was previously mapped to chromosomal region 1q25-q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT-JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT-JT and in development of some sporadic parathyroid tumors.  相似文献   

5.
Using a candidate gene approach, we identified a novel human gene, OTOF, underlying an autosomal recessive, nonsyndromic prelingual deafness, DFNB9. The same nonsense mutation was detected in four unrelated affected families of Lebanese origin. OTOF is the second member of a mammalian gene family related to Caenorhabditis elegans fer-1. It encodes a predicted cytosolic protein (of 1,230 aa) with three C2 domains and a single carboxy-terminal transmembrane domain. The sequence homologies and predicted structure of otoferlin, the protein encoded by OTOF, suggest its involvement in vesicle membrane fusion. In the inner ear, the expression of the orthologous mouse gene, mainly in the sensory hair cells, indicates that such a role could apply to synaptic vesicles.  相似文献   

6.
Nephronophthisis (NPHP), a group of autosomal recessive cystic kidney disorders, is the most common genetic cause of progressive renal failure in children and young adults. NPHP may be associated with Leber congenital amaurosis, tapeto-retinal degeneration, cerebellar ataxia, cone-shaped epiphyses, congenital oculomotor apraxia and hepatic fibrosis. Loci associated with an infantile type of NPHP on 9q22-q31 (NPHP2), juvenile types of NPHP on chromosomes 2q12-q13 (NPHP1) and 1p36 (NPHP4) and an adolescent type of NPHP on 3q21-q22 (NPHP3) have been mapped. NPHP1 and NPHP4 have been identified, and interaction of the respective encoded proteins nephrocystin and nephrocystin-4 has been shown. Here we report the identification of NPHP3, encoding a novel 1,330-amino acid protein that interacts with nephrocystin. We describe mutations in NPHP3 in families with isolated NPHP and in families with NPHP with associated hepatic fibrosis or tapeto-retinal degeneration. We show that the mouse ortholog Nphp3 is expressed in the node, kidney tubules, retina, respiratory epithelium, liver, biliary tract and neural tissues. In addition, we show that a homozygous missense mutation in Nphp3 is probably responsible for the polycystic kidney disease (pcy) mouse phenotype. Interventional studies in the pcy mouse have shown beneficial effects by modification of protein intake and administration of methylprednisolone, suggesting therapeutic strategies for treating individuals with NPHP3.  相似文献   

7.
Spondylocostal dysostosis (SD, MIM 277300) is a group of vertebral malsegmentation syndromes with reduced stature resulting from axial skeletal defects. SD is characterized by multiple hemivertebrae, rib fusions and deletions with a non-progressive kyphoscoliosis. Cases may be sporadic or familial, with both autosomal dominant and autosomal recessive modes of inheritance reported. Autosomal recessive SD maps to a 7.8-cM interval on chromosome 19q13.1-q13.3 that is homologous with a mouse region containing a gene encoding the Notch ligand delta-like 3 (Dll3). Dll3 is mutated in the X-ray-induced mouse mutant pudgy (pu), causing a variety of vertebrocostal defects similar to SD phenotypes. Here we have cloned and sequenced human DLL3 to evaluate it as a candidate gene for SD and identified mutations in three autosomal recessive SD families. Two of the mutations predict truncations within conserved extracellular domains. The third is a missense mutation in a highly conserved glycine residue of the fifth epidermal growth factor (EGF) repeat, which has revealed an important functional role for this domain. These represent the first mutations in a human Delta homologue, thus highlighting the critical role of the Notch signalling pathway and its components in patterning the mammalian axial  相似文献   

8.
LMNA, encoding lamin A/C, is mutated in partial lipodystrophy   总被引:23,自引:0,他引:23  
The lipodystrophies are a group of disorders characterized by the absence or reduction of subcutaneous adipose tissue. Partial lipodystrophy (PLD; MIM 151660) is an inherited condition in which a regional (trunk and limbs) loss of fat occurs during the peri-pubertal phase. Additionally, variable degrees of resistance to insulin action, together with a hyperlipidaemic state, may occur and simulate the metabolic features commonly associated with predisposition to atherosclerotic disease. The PLD locus has been mapped to chromosome 1q with no evidence of genetic heterogeneity. We, and others, have refined the location to a 5.3-cM interval between markers D1S305 and D1S1600 (refs 5, 6). Through a positional cloning approach we have identified five different missense mutations in LMNA among ten kindreds and three individuals with PLD. The protein product of LMNA is lamin A/C, which is a component of the nuclear envelope. Heterozygous mutations in LMNA have recently been identified in kindreds with the variant form of muscular dystrophy (MD) known as autosomal dominant Emery-Dreifuss MD (EDMD-AD; ref. 7) and dilated cardiomyopathy and conduction-system disease (CMD1A). As LMNA is ubiquitously expressed, the finding of site-specific amino acid substitutions in PLD, EDMD-AD and CMD1A reveals distinct functional domains of the lamin A/C protein required for the maintenance and integrity of different cell types.  相似文献   

9.
Pigmentation of the skin is of great social, clinical and cosmetic significance. Several genes that, when mutated, give rise to altered coat color in mice have been identified; their analysis has provided some insight into melanogenesis and human pigmentation diseases. Such analyses do not, however, fully inform on the pigmentation of lower vertebrates because mammals have only one kind of chromatophore, the melanocyte. In contrast, the medaka (a small, freshwater teleost) is a suitable model of the lower vertebrates because it has all kinds of chromatophores. The basic molecular genetics of fish are known and approximately 70 spontaneous pigmentation mutants have been isolated. One of these, an orange-red variant, is a homozygote of a well-known and common allele, b, and has been bred for hundreds of years by the Japanese. Here, we report the first successful positional cloning of a medaka gene (AIM1): one that encodes a transporter that mediates melanin synthesis. The protein is predicted to consist of 12 transmembrane domains and is 55% identical to a human EST of unknown function isolated from melanocytes and melanoma cells. We also isolated a highly homologous gene from the mouse, indicating a conserved function of vertebrate melanogenesis. Intriguingly, these proteins have sequence and structural similarities to plant sucrose transporters, suggesting a relevance of sucrose in melanin synthesis. Analysis of AIM1 orthologs should provide new insights into the regulation of melanogenesis in both teleosts and mammals.  相似文献   

10.
Familial tumoral calcinosis (FTC; OMIM 211900) is a severe autosomal recessive metabolic disorder that manifests with hyperphosphatemia and massive calcium deposits in the skin and subcutaneous tissues. Using linkage analysis, we mapped the gene underlying FTC to 2q24-q31. This region includes the gene GALNT3, which encodes a glycosyltransferase responsible for initiating mucin-type O-glycosylation. Sequence analysis of GALNT3 identified biallelic deleterious mutations in all individuals with FTC, suggesting that defective post-translational modification underlies the disease.  相似文献   

11.
Megaloblastic anaemia 1 (MGA1, OMIM 261100) is a rare, autosomal recessive disorder characterized by juvenile megaloblastic anaemia, as well as neurological symptoms that may be the only manifestations. At the cellular level, MGA1 is characterized by selective intestinal vitamin B12 (B12, cobalamin) malabsorption. MGA1 occurs worldwide, but its prevalence is higher in several Middle Eastern countries and Norway, and highest in Finland (0.8/100,000). We previously mapped the MGA1 locus by linkage analysis in Finnish and Norwegian families to a 6-cM region on chromosome 10p12.1 (ref. 8). A functional candidate gene encoding the intrinsic factor (IF)-B12 receptor, cubilin, was recently cloned; the human homologue, CUBN, was mapped to the same region. We have now refined the MGA1 region by linkage disequilibrium (LD) mapping, fine-mapped CUBN and identified two independent disease-specific CUBN mutations in 17 Finnish MGA1 families. Our genetic and molecular data indicate that mutations in CUBN cause MGA1.  相似文献   

12.
Ataxia-telangiectasia is characterized by radiosensitivity, genome instability and predisposition to cancer. Heterozygous carriers of ATM, the gene defective in ataxia-telangiectasia, have a higher than normal risk of developing breast and other cancers. We demonstrate here that Atm 'knock-in' (Atm-Delta SRI) heterozygous mice harboring an in-frame deletion corresponding to the human 7636del9 mutation show an increased susceptibility to developing tumors. In contrast, no tumors are observed in Atm knockout (Atm(+/-)) heterozygous mice. In parallel, we report the appearance of tumors in 6 humans from 12 families who are heterozygous for the 7636del9 mutation. Expression of ATM cDNA containing the 7636del9 mutation had a dominant-negative effect in control cells, inhibiting radiation-induced ATM kinase activity in vivo and in vitro. This reduces the survival of these cells after radiation exposure and enhances the level of radiation-induced chromosomal aberrations. These results show for the first time that mouse carriers of a mutated Atm that are capable of expressing Atm have a higher risk of cancer. This finding provides further support for cancer predisposition in human ataxia-telangiectasia carriers.  相似文献   

13.
Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1.   总被引:20,自引:0,他引:20  
B Gao  J Guo  C She  A Shu  M Yang  Z Tan  X Yang  S Guo  G Feng  L He 《Nature genetics》2001,28(4):386-388
Brachydactyly type A-1 (BDA-1; MIM 112500) is characterized by shortening or missing of the middle phalanges (Fig. 1a). It was first identified by Farabee in 1903 (ref. 2), is the first recorded example of a human anomaly with Mendelian autosomal-dominant inheritance and, as such, is cited in most genetic and biological textbooks. Here we show that mutations in IHH, which encodes Indian hedgehog, cause BDA-1. We have identified three heterozygous missense mutations in the region encoding the amino-terminal signaling domain in all affected members of three large, unrelated families. The three mutant amino acids, which are conserved across all vertebrates and invertebrates studied so far, are predicted to be adjacent on the surface of IHH.  相似文献   

14.
Chorea-acanthocytosis is a neurodegenerative disorder with peripheral red cell acanthocytosis. Linkage of chorea-acanthocytosis to chromosome 9q21 has been found. We refined the locus region and identified a previously unknown, full-length cDNA encoding a presumably structural protein, which we called chorein. We found a deletion in the coding region of the cDNA leading to a frame shift resulting in the production of a truncated protein in both alleles of patients and in single alleles of obligate carriers.  相似文献   

15.
Focal and segmental glomerulosclerosis (FSGS) is a common, non-specific renal lesion. Although it is often secondary to other disorders, including HIV infection, obesity, hypertension and diabetes, FSGS also appears as an isolated, idiopathic condition. FSGS is characterized by increased urinary protein excretion and decreasing kidney function. Often, renal insufficiency in affected patients progresses to end-stage renal failure, a highly morbid state requiring either dialysis therapy or kidney transplantation. Here we present evidence implicating mutations in the gene encoding alpha-actinin-4 (ACTN4; ref. 2), an actin-filament crosslinking protein, as the cause of disease in three families with an autosomal dominant form of FSGS. In vitro, mutant alpha-actinin-4 binds filamentous actin (F-actin) more strongly than does wild-type alpha-actinin-4. Regulation of the actin cytoskeleton of glomerular podocytes may be altered in this group of patients. Our results have implications for understanding the role of the cytoskeleton in the pathophysiology of kidney disease and may lead to a better understanding of the genetic basis of susceptibility to kidney damage.  相似文献   

16.
Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor' and 'superficial zone protein', contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.  相似文献   

17.
We describe here eleven different mutations in SPINK5, encoding the serine protease inhibitor LEKTI, in 13 families with Netherton syndrome (NS, MIM256500). Most of these mutations predict premature termination codons. These results disclose a critical role of SPINK5 in epidermal barrier function and immunity, and suggest a new pathway for high serum IgE levels and atopic manifestations.  相似文献   

18.
Infantile myopathies with diaphragmatic paralysis are genetically heterogeneous, and clinical symptoms do not assist in differentiating between them. We used phased haplotype analysis with subsequent targeted exome sequencing to identify MEGF10 mutations in a previously unidentified type of infantile myopathy with diaphragmatic weakness, areflexia, respiratory distress and dysphagia. MEGF10 is highly expressed in activated satellite cells and regulates their proliferation as well as their differentiation and fusion into multinucleated myofibers, which are greatly reduced in muscle from individuals with early onset myopathy, areflexia, respiratory distress and dysphagia.  相似文献   

19.
Human cyclic haematopoiesis (cyclic neutropenia, MIM 162800) is an autosomal dominant disease in which blood-cell production from the bone marrow oscillates with 21-day periodicity. Circulating neutrophils vary between almost normal numbers and zero. During intervals of neutropenia, affected individuals are at risk for opportunistic infection. Monocytes, platelets, lymphocytes and reticulocytes also cycle with the same frequency. Here we use a genome-wide screen and positional cloning to map the locus to chromosome 19p13.3. We identified 7 different single-base substitutions in the gene (ELA2) encoding neutrophil elastase (EC 3. 4.21.37, also known as leukocyte elastase, elastase 2 and medullasin), a serine protease of neutrophil and monocyte granules, on unique haplotypes in 13 of 13 families as well as a new mutation in a sporadic case. Neutrophil elastase (a 240-aa mature protein predominantly found in neutrophil granules) is the target for protease inhibition by alpha1-antitrypsin, and its unopposed release destroys tissue at sites of inflammation. We hypothesize that a perturbed interaction between neutrophil elastase and serpins or other substrates may regulate mechanisms governing the clock-like timing of haematopoiesis.  相似文献   

20.
The amnionless gene, Amn, on mouse chromosome 12 encodes a type I transmembrane protein that is expressed in the extraembryonic visceral layer during gastrulation. Mice homozygous with respect to the amn mutation generated by a transgene insertion have no amnion. The embryos are severely compromised, surviving to the tenth day of gestation but seem to lack the mesodermal layers that normally produce the trunk. The Amn protein has one transmembrane domain separating a larger, N-terminal extracellular region and a smaller, C-terminal cytoplasmic region. The extracellular region harbors a cysteine-rich domain resembling those occurring in Chordin, found in Xenopus laevis embryos, and Sog, found in Drosophila melanogaster. As these cysteine-rich domains bind bone morphogenetic proteins (Bmps), it has been speculated that the cysteine-rich domain in Amn also binds Bmps. We show that homozygous mutations affecting exons 1-4 of human AMN lead to selective malabsorption of vitamin B12 (a phenotype associated with megaloblastic anemia 1, MGA1; OMIM 261100; refs. 5,6) in otherwise normal individuals, suggesting that the 5' end of AMN is dispensable for embryonic development but necessary for absorption of vitamin B12. When the 5' end of AMN is truncated by mutations, translation is initiated from alternative downstream start codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号