首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
为了求分数阶变系数且带有弱奇异积分核Volterra-Fredholm积分微分方程的数值解,本文提出了Legendre多项式算子矩阵法,利用Legendre多项式的定义及其性质给出了分数阶微分算子矩阵,同时也给出了任意阶弱奇异积分的近似求积公式.通过简化所求分数阶积分微分方程,并离散化简后的方程,可将原问题转换为求代数方程组的解.收敛性分析证明了本文方法是收敛的,数值算例验证了该方法的有效性.  相似文献   

2.
为利用Legendre小波求分数阶Bratu型积分微分方程数值解,结合Legendre小波定义及其性质,给出Legendre小波分数阶积分算子矩阵.利用所得算子矩阵,将原问题转化为求解非线性代数方程组,进而可以计算机编程求解,从而大大简化计算量.唯一性定理指出所求分数阶Bratu型积分微分方程的解唯一.结果表明:随着点数的增多,数值解精度也越来越高.数值算例验证了算法的有效性和可行性.  相似文献   

3.
为了求解非线性分数阶Fredholm积分微分方程的数值解,通过Legendre多项式,得出了Legendre小波,并由block pulse函数给出了Legendre小波的分数阶积分算子矩阵,利用block pulse函数与Legendre小波的积分算子矩阵的性质将非线性分数阶Fredholm积分微分方程转化为非线性代数方程组,进而可以求得原积分微分方程的数值解.结果表明:随着点数的增多,数值解的精度也越来越高.文中给出的算例表明了该方法的可行性和有效性.  相似文献   

4.
整数阶常微分方程的数值解法已有比较完善的理论,而时于分数阶微分方程数值方法的理论研究相对较少.由此考虑用Legendre小波逼近求线性分数阶微分方程数值解.首先描述了分数阶导敷、积分和I~enare小波的性质,然后利用这些性质把分数阶微分方程转化为Volterra积分方程.考虑采用Legendre小波求数值解的线性分数阶微分方程:Day(x)+λy(x)=f(x),0相似文献   

5.
为了求高阶变系数且带有弱奇异积分核非线性Volterra-Fredholm积分微分方程的数值解,文章结合CAS小波的性质及block pulse函数,给出任意阶弱奇异积分的近似求积公式,同时也给出CAS小波的积分算子矩阵,进而可以化简所求非线性积分微分方程,将原问题转换为求非线性方程组的解,数值算例验证了该方法的有效性。  相似文献   

6.
针对一类非线性分数阶微分方程,采用Legendre小波法对非线性分数阶微分方程进行研究.结合BlockPulse函数给出Legendre小波的分数阶积分算子矩阵,利用Block Pulse函数的定义与Legendre小波积分算子矩阵的性质将非线性分数阶微分方程转换为非线性代数方程组,进而对其数值解和误差分析进行研究.结果表明:随着点数增多,数值解的精确度增加.数值算例验证了小波法的可行性和有效性.  相似文献   

7.
建立了求解梁振动方程数值解的移位Legendre小波配置法。利用移位的Legendre多项式,推导出Riemann-Liouville意义下移位Legendre小波函数的一般分数阶积分公式。利用分数积分公式和二维移位Legendre小波配置法,将梁振动方程求解问题转化为代数方程组求解。数值算例表明该方法具有较高的精度。  相似文献   

8.
为了求高阶变系数且带有弱奇异积分核Volterra-Fredholm积分微分方程的数值解,提出了Bernstein算子矩阵法.利用Bernstein多项式的定义及其性质给出任意阶弱奇异积分的近似求积公式,同时也给出Bernstein多项式的微分算子矩阵.通过化简所求方程及离散化简后的方程,可将原问题转换为求代数方程组的解.最后,通过收敛性分析说明该方法是收敛的,并用数值算例验证了方法的有效性.  相似文献   

9.
利用Legendre多项式的定义和性质,给出Legendre多项式微分算子矩阵,得到任意阶弱奇异积分的近似求积公式,并将原方程转换为代数方程.收敛性分析说明该方法是收敛的,数值算例验证了该方法的有效性和理论分析的正确性.  相似文献   

10.
利用定义在[0,1)上的连续Legendre多小波数值求解线性Fredholm积分一微分方程.剁用Legendre多小波逼近理论将积分一微分方程离散化为代数方程组.最后用数值算例与CAS小波理论以及Legendre小波理论比较,结果表明特别是当方程的解是线性函数时,Legendre多小波方法表现出更高的精度和有效性.  相似文献   

11.
基于第六类Chebyshev小波配置法,提出一种求解分数阶微分方程数值解的数值方法。利用平移的第六类Chebyshev多项式,在Riemann-Liouville分数阶定义下,获得了第六类Chebyshev小波函数的分数阶积分公式的精确表达式。利用积分公式,结合有效配置法,将分数阶微分方程的求解问题转化为代数方程组进行求解。同时,给出了第六类Chebyshev小波函数展开逼近的一致收敛性分析和L2范数意义下的误差估计。通过数值算例验证该算法的适用性与有效性。  相似文献   

12.
在分析非标准小波表示方法的基础上,计算了Legendre小波积分算子矩阵的非标准小波表示,并且计算了Legendre小波矢量函数积算子,还定义了积分算子,用这些算子求解Lane-Emden方程,得到了较好的数值逼近解.此方法还可以用于求解非线性积分方程,积分、微分方程.  相似文献   

13.
提出了一种求解高阶微分方程数值解的第3类Chebyshev小波方法.通过利用位移第3类Chebyshev多项式,在Riemann-liouville分数阶定义下,借助Laplace变换推导了第3类Chebyshev小波函数分数阶积分的精确表达式,给出了小波函数逼近的误差估计.利用小波配置法,将高阶微分方程的求解问题转化为代数方程组进行求解.数值算例表明了该算法的适用性与有效性.  相似文献   

14.
针对一类强奇异积分,给出了Hadamard有限部分积分的定义,并通过Legendre小波求其近似值.由于Legendre小波具有正交性、小支集性和小波函数的可计算性,因此利用Legendre小波近似给定函数,将原来区间转化为若干子区间,当奇异点位于某一子区间时,可采用所给强奇异积分的Hadamard有限部分积分定义来求值.给出了算法的误差估计,通过数值算例进一步验证方法的有效性和理论的正确性.  相似文献   

15.
用分离奇异性的方法和正常积分的闭求积公式,构造了带Legendre权含Cauchy核奇异积分的闭求积公式,推导出奇异积分的闭求积公式的求积系数,在计算机上用Matlab编程实现求积公式的数值实验,实验数值结果与理论分析相符.  相似文献   

16.
利用压缩映射、Legendre多项式和小波的正交性得到分片二次多项式小波的具体表达式,然后将此小波作为基函数,采用配置法求Fisher方程的数值解,最后的数值实验说明了此方法求Fisher方程数值解的有效性和可行性.  相似文献   

17.
考虑求高阶Volterra积分微分方程的数值解.利用小波的正交性质及矩阵的稀疏性,给出了CAS小波的积分算子矩阵;利用小波算子矩阵将高阶积分微分方程化为线性代数方程组,简化了计算空间;最后,通过数值算例证明了该方法的有效性,并且得到更高精度的数值解.  相似文献   

18.
先利用Legendre小波的分数阶积分算子矩阵将非线性分数阶Volterra积分微分方程转化为非线性代数方程组, 再通过数值求解方程组得到原方程的数值解, 证明了误差边界值, 并用算例验证了该方法的有效性和精确性.  相似文献   

19.
应用 Legendre 小波求解一类变系数分数阶微分方程组,利用 Legendre 小波积分算子矩阵将微分方程组转化成易于求解的代数方程组形式,进而对其进行求解。给出 Legendre 小波近似未知函数的收敛性分析,证明该方法的正确性,并给出三个数值算例进一步说明该方法是可行并有效的。  相似文献   

20.
基于三尺度第3类Chebyshev小波,提出了一类非线性分数阶微分方程数值解的一个小波配点法。首先,构造了三尺度第3类Chebyshev小波函数,证明了该小波函数的标准正交性,并给出了小波函数展开的L2范数意义下的一致收敛性分析和误差估计。其次,基于平移第3类Chebyshev多项式,借助Laplace变换推导出了三尺度第3类Chebyshev小波函数在Riemann-Liouville分数阶意义下的积分公式。最后,结合Picard迭代,利用三尺度第3类Chebyshev小波配点法,将非线性分数阶微分方程的初值问题及边值问题离散为代数方程组求解。数值算例说明了该方法的有效性和高精度性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号