首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.  相似文献   

2.
Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.  相似文献   

3.
Nephronophthisis (NPHP), a group of autosomal recessive cystic kidney disorders, is the most common genetic cause of progressive renal failure in children and young adults. NPHP may be associated with Leber congenital amaurosis, tapeto-retinal degeneration, cerebellar ataxia, cone-shaped epiphyses, congenital oculomotor apraxia and hepatic fibrosis. Loci associated with an infantile type of NPHP on 9q22-q31 (NPHP2), juvenile types of NPHP on chromosomes 2q12-q13 (NPHP1) and 1p36 (NPHP4) and an adolescent type of NPHP on 3q21-q22 (NPHP3) have been mapped. NPHP1 and NPHP4 have been identified, and interaction of the respective encoded proteins nephrocystin and nephrocystin-4 has been shown. Here we report the identification of NPHP3, encoding a novel 1,330-amino acid protein that interacts with nephrocystin. We describe mutations in NPHP3 in families with isolated NPHP and in families with NPHP with associated hepatic fibrosis or tapeto-retinal degeneration. We show that the mouse ortholog Nphp3 is expressed in the node, kidney tubules, retina, respiratory epithelium, liver, biliary tract and neural tissues. In addition, we show that a homozygous missense mutation in Nphp3 is probably responsible for the polycystic kidney disease (pcy) mouse phenotype. Interventional studies in the pcy mouse have shown beneficial effects by modification of protein intake and administration of methylprednisolone, suggesting therapeutic strategies for treating individuals with NPHP3.  相似文献   

4.
Nephronophthisis, the most common genetic cause of chronic renal failure in children, is a progressive tubulo-interstitial kidney disorder that is inherited as an autosomal recessive trait. The disease is characterized by polyuria, growth retardation and deterioration of renal function during childhood or adolescence. The most prominent histological features are modifications of the tubules with thickening of the basement membrane, interstitial fibrosis and, in the advanced stages, medullary cysts. Nephronophthisis can also be associated with conditions affecting extrarenal organs, such as retinitis pigmentosa (Senior-L?ken syndrome) and ocular motor apraxia (Cogan syndrome). Three loci are associated with the juvenile, infantile and adolescent forms, on chromosomes 2q13 (NPHP1; refs 5,6), 9q22 (NPHP2; ref. 7) and 3q21 (NPHP3; ref. 8), respectively. NPHP1, the only gene identified so far, encodes nephrocystin, which contains a Src homology 3 (SH3) domain and interacts with intracytoplasmic proteins involved in cell adhesion. Recently, a second locus associated with the juvenile form of the disease, NPHP4, was mapped to chromosome 1p36 (ref. 14). We carried out haplotype analysis of families affected with nephronophthisis that were not linked to the NPHP1, NPHP2 or NPHP3 loci, using markers covering this region. This allowed us to reduce the NPHP4 interval to a one centimorgan interval between D1S2795 and D1S2870, which contains six genes. We identified five different mutations in one of these genes, designated NPHP4, in unrelated individuals with nephronophthisis. The NPHP4 gene encodes a 1,250-amino acid protein of unknown function that we named nephrocystin-4. We demonstrated the interaction of nephrocystin-4 with nephrocystin suggesting that these two proteins participate in a common signaling pathway.  相似文献   

5.
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.  相似文献   

6.
7.
Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.  相似文献   

8.
In addition to its activity in nicotinamide adenine dinucleotide (NAD(+)) synthesis, the nuclear nicotinamide mononucleotide adenyltransferase NMNAT1 acts as a chaperone that protects against neuronal activity-induced degeneration. Here we report that compound heterozygous and homozygous NMNAT1 mutations cause severe neonatal neurodegeneration of the central retina and early-onset optic atrophy in 22 unrelated individuals. Their clinical presentation is consistent with Leber congenital amaurosis and suggests that the mutations affect neuroprotection of photoreceptor cells.  相似文献   

9.
Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, leads to chronic renal failure in children. The genes mutated in NPHP1 and NPHP4 have been identified, and a gene locus associated with infantile nephronophthisis (NPHP2) was mapped. The kidney phenotype of NPHP2 combines clinical features of NPHP and polycystic kidney disease (PKD). Here, we identify inversin (INVS) as the gene mutated in NPHP2 with and without situs inversus. We show molecular interaction of inversin with nephrocystin, the product of the gene mutated in NPHP1 and interaction of nephrocystin with beta-tubulin, a main component of primary cilia. We show that nephrocystin, inversin and beta-tubulin colocalize to primary cilia of renal tubular cells. Furthermore, we produce a PKD-like renal cystic phenotype and randomization of heart looping by knockdown of invs expression in zebrafish. The interaction and colocalization in cilia of inversin, nephrocystin and beta-tubulin connect pathogenetic aspects of NPHP to PKD, to primary cilia function and to left-right axis determination.  相似文献   

10.
Leber congenital amaurosis (LCA) is an autosomal recessive retinal dystrophy that manifests with genetic heterogeneity. We sequenced the exome of an individual with LCA and identified nonsense (c.507G>A, p.Trp169*) and missense (c.769G>A, p.Glu257Lys) mutations in NMNAT1, which encodes an enzyme in the nicotinamide adenine dinucleotide (NAD) biosynthesis pathway implicated in protection against axonal degeneration. We also found NMNAT1 mutations in ten other individuals with LCA, all of whom carry the p.Glu257Lys variant.  相似文献   

11.
Joubert syndrome is a congenital brain malformation of the cerebellar vermis and brainstem with abnormalities of axonal decussation (crossing in the brain) affecting the corticospinal tract and superior cerebellar peduncles. Individuals with Joubert syndrome have motor and behavioral abnormalities, including an inability to walk due to severe clumsiness and 'mirror' movements, and cognitive and behavioral disturbances. Here we identified a locus associated with Joubert syndrome, JBTS3, on chromosome 6q23.2-q23.3 and found three deleterious mutations in AHI1, the first gene to be associated with Joubert syndrome. AHI1 is most highly expressed in brain, particularly in neurons that give rise to the crossing axons of the corticospinal tract and superior cerebellar peduncles. Comparative genetic analysis of AHI1 indicates that it has undergone positive evolutionary selection along the human lineage. Therefore, changes in AHI1 may have been important in the evolution of human-specific motor behaviors.  相似文献   

12.
Meckel-Gruber syndrome (MKS) is a genetically heterogeneous, neonatally lethal malformation and the most common form of syndromic neural tube defect (NTD). To date, several MKS-associated genes have been identified whose protein products affect ciliary function. Here we show that mutations in MKS1, MKS3 and CEP290 (also known as NPHP6) either can cause Bardet-Biedl syndrome (BBS) or may have a potential epistatic effect on mutations in known BBS-associated loci. Five of six families with both MKS1 and BBS mutations manifested seizures, a feature that is not a typical component of either syndrome. Functional studies in zebrafish showed that mks1 is necessary for gastrulation movements and that it interacts genetically with known bbs genes. Similarly, we found two families with missense or splice mutations in MKS3, in one of which the affected individual also bears a homozygous nonsense mutation in CEP290 that is likely to truncate the C terminus of the protein. These data extend the genetic stratification of ciliopathies and suggest that BBS and MKS, although distinct clinically, are allelic forms of the same molecular spectrum.  相似文献   

13.
Leber congenital amaurosis (LCA, MIM 204000) accounts for at least 5% of all inherited retinal disease and is the most severe inherited retinopathy with the earliest age of onset. Individuals affected with LCA are diagnosed at birth or in the first few months of life with severely impaired vision or blindness, nystagmus and an abnormal or flat electroretinogram (ERG). Mutations in GUCY2D (ref. 3), RPE65 (ref. 4) and CRX (ref. 5) are known to cause LCA, but one study identified disease-causing GUCY2D mutations in only 8 of 15 families whose LCA locus maps to 17p13.1 (ref. 3), suggesting another LCA locus might be located on 17p13.1. Confirming this prediction, the LCA in one Pakistani family mapped to 17p13.1, between D17S849 and D17S960-a region that excludes GUCY2D. The LCA in this family has been designated LCA4 (ref. 6). We describe here a new photoreceptor/pineal-expressed gene, AIPL1 (encoding aryl-hydrocarbon interacting protein-like 1), that maps within the LCA4 candidate region and whose protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity. A homozygous nonsense mutation at codon 278 is present in all affected members of the original LCA4 family. AIPL1 mutations may cause approximately 20% of recessive LCA, as disease-causing mutations were identified in 3 of 14 LCA families not tested previously for linkage.  相似文献   

14.
15.
Defects in cilia are associated with several human disorders, including Kartagener syndrome, polycystic kidney disease, nephronophthisis and hydrocephalus. We proposed that the pleiotropic phenotype of Bardet-Biedl syndrome (BBS), which encompasses retinal degeneration, truncal obesity, renal and limb malformations and developmental delay, is due to dysfunction of basal bodies and cilia. Here we show that individuals with BBS have partial or complete anosmia. To test whether this phenotype is caused by ciliary defects of olfactory sensory neurons, we examined mice with deletions of Bbs1 or Bbs4. Loss of function of either BBS protein affected the olfactory, but not the respiratory, epithelium, causing severe reduction of the ciliated border, disorganization of the dendritic microtubule network and trapping of olfactory ciliary proteins in dendrites and cell bodies. Our data indicate that BBS proteins have a role in the microtubule organization of mammalian ciliated cells and that anosmia might be a useful determinant of other pleiotropic disorders with a suspected ciliary involvement.  相似文献   

16.
Bardet-Biedl syndrome (BBS, MIM 209900) is a heterogeneous autosomal recessive disorder characterized by obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. The disorder is also associated with diabetes mellitus, hypertension, and congenital heart disease. Six distinct BBS loci map to 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although BBS is rare in the general population (<1/100,000), there is considerable interest in identifying the genes causing BBS because components of the phenotype, such as obesity and diabetes, are common. We and others have demonstrated that BBS6 is caused by mutations in the gene MKKS (refs. 12,13), mutation of which also causes McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly, and congenital heart defects). MKKS has sequence homology to the alpha subunit of a prokaryotic chaperonin in the thermosome Thermoplasma acidophilum. We recently identified a novel gene that causes BBS2. The BBS2 protein has no significant similarity to other chaperonins or known proteins. Here we report the positional cloning and identification of mutations in BBS patients in a novel gene designated BBS4.  相似文献   

17.
Leber congenital amaurosis (LCA) is an infantile-onset form of inherited retinal degeneration characterized by severe vision loss. Two-thirds of LCA cases are caused by mutations in 17 known disease-associated genes (Retinal Information Network (RetNet)). Using exome sequencing we identified a homozygous missense mutation (c.25G>A, p.Val9Met) in NMNAT1 that is likely to be disease causing in two siblings of a consanguineous Pakistani kindred affected by LCA. This mutation segregated with disease in the kindred, including in three other children with LCA. NMNAT1 resides in the previously identified LCA9 locus and encodes the nuclear isoform of nicotinamide mononucleotide adenylyltransferase, a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD(+)) biosynthesis. Functional studies showed that the p.Val9Met alteration decreased NMNAT1 enzyme activity. Sequencing NMNAT1 in 284 unrelated families with LCA identified 14 rare mutations in 13 additional affected individuals. These results are the first to link an NMNAT isoform to disease in humans and indicate that NMNAT1 mutations cause LCA.  相似文献   

18.
Leber congenital amaurosis (LCA) is the most serious form of the autosomal recessive childhood-onset retinal dystrophies. Mutations in the gene encoding RPE65, a protein vital for regeneration of the visual pigment rhodopsin in the retinal pigment epithelium, account for 10-15% of LCA cases. Whereas previous studies of RPE65 deficiency in both animal models and patients attributed remaining visual function to cones, we show here that light-evoked retinal responses in fact originate from rods. For this purpose, we selectively impaired either rod or cone function in Rpe65-/- mice by generating double- mutant mice with models of pure cone function (rhodopsin-deficient mice; Rho-/-) and pure rod function (cyclic nucleotide-gated channel alpha3-deficient mice; Cnga3-/-). The electroretinograms (ERGs) of Rpe65-/- and Rpe65-/-Cnga3-/- mice were almost identical, whereas there was no assessable response in Rpe65-/-Rho-/- mice. Thus, we conclude that the rod system is the source of vision in RPE65 deficiency. Furthermore, we found that lack of RPE65 enables rods to mimic cone function by responding under normally cone-isolating lighting conditions. We propose as a mechanism decreased rod sensitivity due to a reduction in rhodopsin content to less than 1%. In general, the dissection of pathophysiological processes in animal models through the introduction of additional, selective mutations is a promising concept in functional genetics.  相似文献   

19.
The relationship between the neurosensory photoreceptors and the adjacent retinal pigment epithelium (RPE) controls not only normal retinal function, but also the pathogenesis of hereditary retinal degenerations. The molecular bases for both primary photoreceptor and RPE diseases that cause blindness have been identified. Gene therapy has been used successfully to slow degeneration in rodent models of primary photoreceptor diseases, but efficacy of gene therapy directed at photoreceptors and RPE in a large-animal model of human disease has not been reported. Here we study one of the most clinically severe retinal degenerations, Leber congenital amaurosis (LCA). LCA causes near total blindness in infancy and can result from mutations in RPE65 (LCA, type II; MIM 180069 and 204100). A naturally occurring animal model, the RPE65-/- dog, suffers from early and severe visual impairment similar to that seen in human LCA. We used a recombinant adeno-associated virus (AAV) carrying wild-type RPE65 (AAV-RPE65) to test the efficacy of gene therapy in this model. Our results indicate that visual function was restored in this large animal model of childhood blindness.  相似文献   

20.
Distal hereditary motor neuropathy (dHMN) or distal spinal muscular atrophy (OMIM #182960) is a heterogeneous group of disorders characterized by an almost exclusive degeneration of motor nerve fibers, predominantly in the distal part of the limbs. Silver syndrome (OMIM #270685) is a rare form of hereditary spastic paraparesis mapped to chromosome 11q12-q14 (SPG17) in which spasticity of the legs is accompanied by amyotrophy of the hands and occasionally also the lower limbs. Silver syndrome and most forms of dHMN are autosomal dominantly inherited with incomplete penetrance and a broad variability in clinical expression. A genome-wide scan in an Austrian family with dHMN-V (ref. 4) showed linkage to the locus SPG17, which was confirmed in 16 additional families with a phenotype characteristic of dHMN or Silver syndrome. After refining the critical region to 1 Mb, we sequenced the gene Berardinelli-Seip congenital lipodystrophy (BSCL2) and identified two heterozygous missense mutations resulting in the amino acid substitutions N88S and S90L. Null mutations in BSCL2, which encodes the protein seipin, were previously shown to be associated with autosomal recessive Berardinelli-Seip congenital lipodystrophy (OMIM #269700). We show that seipin is an integral membrane protein of the endoplasmic reticulum (ER). The amino acid substitutions N88S and S90L affect glycosylation of seipin and result in aggregate formation leading to neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号