首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After terrestrialization, the diversification of arthropods and vertebrates is thought to have occurred in two distinct phases, the first between the Silurian and the Frasnian stages (Late Devonian period) (425-385?million years (Myr) ago), and the second characterized by the emergence of numerous new major taxa, during the Late Carboniferous period (after 345?Myr ago). These two diversification periods bracket the depauperate vertebrate Romer's gap (360-345?Myr ago) and arthropod gap (385-325?Myr ago), which could be due to preservational artefact. Although a recent molecular dating has given an age of 390?Myr for the Holometabola, the record of hexapods during the Early-Middle Devonian (411.5-391?Myr ago, Pragian to Givetian stages) is exceptionally sparse and based on fragmentary remains, which hinders the timing of this diversification. Indeed, although Devonian Archaeognatha are problematic, the Pragian of Scotland has given some Collembola and the incomplete insect Rhyniognatha, with its diagnostic dicondylic, metapterygotan mandibles. The oldest, definitively winged insects are from the Serpukhovian stage (latest Early Carboniferous period). Here we report the first complete Late Devonian insect, which was probably a terrestrial species. Its 'orthopteroid' mandibles are of an omnivorous type, clearly not modified for a solely carnivorous diet. This discovery narrows the 45-Myr gap in the fossil record of Hexapoda, and demonstrates further a first Devonian phase of diversification for the Hexapoda, as in vertebrates, and suggests that the Pterygota diversified before and during Romer's gap.  相似文献   

2.
Janvier P  Desbiens S  Willett JA  Arsenault M 《Nature》2006,440(7088):1183-1185
So far, the Palaeozoic fossil jawless vertebrates have not provided any direct evidence for the organization of the gills, apart from vague impressions--supposedly left by gill filaments--on the bony surface of the gill chamber in certain armoured forms or 'ostracoderms' (for example, osteostracans and heterostracans). The latter are currently regarded as more closely related to the living jawed vertebrates (crown gnathostomes) than to the living jawless vertebrates (hagfish and lampreys, or cyclostomes). Here we report the first direct evidence for the position of the gill filaments--possibly supported by gill rays--enclosed by gill pouches in a 370-million year (Myr)-old jawless vertebrate, Endeiolepis, from the Late Devonian fossil fish site of Miguasha, Quebec, Canada. This extinct jawless fish has much the same gill organization as living lampreys, although it possesses an unusually large number of gill pouches--a condition unlike that in any extant vertebrates and that raises questions about gill development. Endeiolepis is currently regarded as a close relative of anaspids, a group of 410-430-Myr-old 'ostracoderms'. Assuming that current vertebrate phylogeny is correct, this discovery demonstrates that pouches enclosing the gills are primitive for vertebrates, but have been subsequently lost in jawed vertebrates.  相似文献   

3.
Botella H  Blom H  Dorka M  Ahlberg PE  Janvier P 《Nature》2007,448(7153):583-586
Extant jawed vertebrates, or gnathostomes, fall into two major monophyletic groups, namely chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). Fossil representatives of the osteichthyan crown group are known from the latest Silurian period, 418 million years (Myr) ago, to the present. By contrast, stem chondrichthyans and stem osteichthyans are still largely unknown. Two extinct Palaeozoic groups, the acanthodians and placoderms, may fall into these stem groups or the common stem group of gnathostomes, but their relationships and monophyletic status are both debated. Here we report unambiguous evidence for osteichthyan characters in jaw bones referred to the late Silurian (423-416-Myr-old) fishes Andreolepis hedei and Lophosteus superbus, long known from isolated bone fragments, scales and teeth, and whose affinities to, or within, osteichthyans have been debated. The bones are a characteristic osteichthyan maxillary and dentary, but the organization of the tooth-like denticles they bear differs from the large, conical teeth of crown-group osteichthyans, indicating that they can be assigned to the stem group. Andreolepis and Lophosteus are thus not only the oldest but also the most phylogenetically basal securely identified osteichthyans known so far.  相似文献   

4.
Long JA  Trinajstic K  Young GC  Senden T 《Nature》2008,453(7195):650-652
The extinct placoderm fishes were the dominant group of vertebrates throughout the Middle Palaeozoic era, yet controversy about their relationships within the gnathostomes (jawed vertebrates) is partly due to different interpretations of their reproductive biology. Here we document the oldest record of a live-bearing vertebrate in a new ptyctodontid placoderm, Materpiscis attenboroughi gen. et sp. nov., from the Late Devonian Gogo Formation of Australia (approximately 380 million years ago). The new specimen, remarkably preserved in three dimensions, contains a single, intra-uterine embryo connected by a permineralized umbilical cord. An amorphous crystalline mass near the umbilical cord possibly represents the recrystallized yolk sac. Another ptyctodont from the Gogo Formation, Austroptyctodus gardineri, also shows three small embryos inside it in the same position. Ptyctodontids have already provided the oldest definite evidence for vertebrate copulation, and the new specimens confirm that some placoderms had a remarkably advanced reproductive biology, comparable to that of some modern sharks and rays. The new discovery points to internal fertilization and viviparity in vertebrates as originating earliest within placoderms.  相似文献   

5.
Cohn MJ 《Nature》2002,416(6879):386-387
The development of jaws was a critical event in vertebrate evolution because it ushered in a transition to a predatory lifestyle, but how this innovation came about has been a mystery. In the embryos of jawed vertebrates (gnathostomes), the jaw cartilage develops from the mandibular arch, where none of the Hox genes is expressed; if these are expressed ectopically, however, jaw development is inhibited. Here I show that in the lamprey, a primitively jawless (agnathan) fish that is a sister group to the gnathostomes, a Hox gene is expressed in the mandibular arch of developing embryos. This finding, together with outgroup comparisons, suggests that loss of Hox expression from the mandibular arch of gnathostomes may have facilitated the evolution of jaws.  相似文献   

6.
Gai Z  Donoghue PC  Zhu M  Janvier P  Stampanoni M 《Nature》2011,476(7360):324-327
Most living vertebrates are jawed vertebrates (gnathostomes), and the living jawless vertebrates (cyclostomes), hagfishes and lampreys, provide scarce information about the profound reorganization of the vertebrate skull during the evolutionary origin of jaws. The extinct bony jawless vertebrates, or 'ostracoderms', are regarded as precursors of jawed vertebrates and provide insight into this formative episode in vertebrate evolution. Here, using synchrotron radiation X-ray tomography, we describe the cranial anatomy of galeaspids, a 435-370-million-year-old 'ostracoderm' group from China and Vietnam. The paired nasal sacs of galeaspids are located anterolaterally in the braincase, and the hypophyseal duct opens anteriorly towards the oral cavity. These three structures (the paired nasal sacs and the hypophyseal duct) were thus already independent of each other, like in gnathostomes and unlike in cyclostomes and osteostracans (another 'ostracoderm' group), and therefore have the condition that current developmental models regard as prerequisites for the development of jaws. This indicates that the reorganization of vertebrate cranial anatomy was not driven deterministically by the evolutionary origin of jaws but occurred stepwise, ultimately allowing the rostral growth of ectomesenchyme that now characterizes gnathostome head development.  相似文献   

7.
Basden AM  Young GC  Coates MI  Ritchie A 《Nature》2000,403(6766):185-188
Most living vertebrates, from teleosts to tetrapods, are osteichthyans (bony fishes), but the origin of this major group is poorly understood. The actinopterygians (ray-finned bony fishes) are the most successful living vertebrates in terms of diversity. They appear in the fossil record in the Late Silurian but are poorly known before the Late Devonian. Here we report the discovery of the oldest and most primitive actinopterygian-like osteichthyan braincase known, from 400-million-year-old limestone in southeastern Australia. This specimen displays previously unknown primitive conditions, in particular, an opening for a cartilaginous eyestalk. It provides an important and unique counterpart to the similarly aged and recently described Psarolepis from China and Vietnam. The contrasting features of these specimens, and the unusual anatomy of the new specimen in particular, provide new insights into anatomical conditions close to the evolutionary radiation of all modern osteichthyan groups.  相似文献   

8.
Miller RF  Cloutier R  Turner S 《Nature》2003,425(6957):501-504
Chondrichthyans (including living sharks, skates, rays and chimaeras) have a fossil record of scales and dermal denticles perhaps dating back to the Late Ordovician period, about 455 million years ago. Their fossil tooth record extends to the earliest Devonian period, almost 418 million years ago, whereas the oldest known articulated shark remains date from the Early Devonian period, about 394 million years ago. Here we report the discovery of an articulated shark that is almost 409 million years old from the Early Devonian (early Emsian) period of New Brunswick, Canada. The specimen, identified as Doliodus problematicus (Woodward), sheds light on the earliest chondrichthyans and their interrelationships with basal jawed vertebrates. This species has been truly problematic. Previously known only from isolated teeth, it has been identified as an acanthodian and a chondrichthyan. This specimen is the oldest shark showing the tooth families in situ, and preserves one of the oldest chondrichthyan braincases. More notably, it shows the presence of paired pectoral fin-spines, previously unknown in cartilaginous fishes.  相似文献   

9.
Thomson KS  Sutton M  Thomas B 《Nature》2003,426(6968):833-834
Perhaps the most enduring of puzzles in palaeontology has been the identity of Palaeospondylus gunni Traquair, a tiny (5-60-mm) vertebrate fossil from the Middle Devonian period (approximately 385 Myr ago) of Scotland, first discovered in 1890 (refs 1-3). It is known principally from a single site (Achanarras Quarry, Caithness) where, paradoxically, it is extremely abundant, preserved in varved lacustrine deposits along with 13 other genera of fishes. Here we show that Palaeospondylus is the larval stage of a lungfish, most probably Dipterus valenciennesi Sedgwick and Murchison 1828 (ref. 5), and that development of the adult form requires a distinct metamorphosis. Palaeospondylus is the oldest known true larva of a vertebrate.  相似文献   

10.
The origin of the vertebrate jaw has been reviewed based on the molecular,developmental and paleontological evidences.Advances in developmental genetics have accumulated to propose the heterotopy theory of jaw evolution,i.e.the jaw evolved as a novelty through a heterotopic shift of mesenchyme-epithelial interaction.According to this theory,the disassociation of the nasohypophyseal complex is a fundamental prerequisite for the origin of the jaw,since the median position of the nasohypophyseal placode in cyclostome head development precludes the forward growth of the neural-crest-derived craniofacial ectomesenchyme.The potential impacts of this disassociation on the origin of the diplorhiny are also discussed from the molecular perspectives.Thus far,our study on the cranial anatomy of galeaspids,a 435-370-million-year-old ’ostracoderm’ group from China and northern Vietnam,has provided the earliest fossil evidence for the disassociation of nasohypophyseal complex in vertebrate phylogeny.Using Synchrotron Radiation X-ray Tomography,we further show some derivative structures of the trabeculae(e.g.orbitonasal lamina,ethmoid plate) in jawless galeaspids,which provide new insights into the reorganization of the vertebrate head before the evolutionary origin of the jaw.These anatomical observations based on new techniques highlight the possibility that galeaspids are,in many respects,a better proxy than osteostracans for reconstructing the pre-gnathostome condition of the rostral part of the braincase.The cranial anatomy of galeaspids reveals a number of derived characters uniquely shared with gnathostomes.This raises the potential possibility that galeaspids might be the closest jawless relatives of jawed vertebrates.Our study provides an intriguing example of intersection between developmental biology-based model and fossil evidence.  相似文献   

11.
12.
Pierce SE  Clack JA  Hutchinson JR 《Nature》2012,486(7404):523-526
The origin of tetrapods and the transition from swimming to walking was a pivotal step in the evolution and diversification of terrestrial vertebrates. During this time, modifications of the limbs—particularly the specialization of joints and the structures that guide their motions—fundamentally changed the ways in which early tetrapods could move. Nonetheless, little is known about the functional consequences of limb anatomy in early tetrapods and how that anatomy influenced locomotion capabilities at this very critical stage in vertebrate evolution. Here we present a three-dimensional reconstruction of the iconic Devonian tetrapod Ichthyostega and a quantitative and comparative analysis of limb mobility in this early tetrapod. We show that Ichthyostega could not have employed typical tetrapod locomotory behaviours, such as lateral sequence walking. In particular, it lacked the necessary rotary motions in its limbs to push the body off the ground and move the limbs in an alternating sequence. Given that long-axis rotation was present in the fins of tetrapodomorph fishes, it seems that either early tetrapods evolved through an initial stage of restricted shoulder and hip joint mobility or that Ichthyostega was unique in this respect. We conclude that early tetrapods with the skeletal morphology and limb mobility of Ichthyostega were unlikely to have made some of the recently described Middle Devonian trackways.  相似文献   

13.
Tavaré S  Marshall CR  Will O  Soligo C  Martin RD 《Nature》2002,416(6882):726-729
Divergence times estimated from molecular data often considerably predate the earliest known fossil representatives of the groups studied. For the order Primates, molecular data calibrated with various external fossil dates uniformly suggest a mid-Cretaceous divergence from other placental mammals, some 90 million years (Myr) ago, whereas the oldest known fossil primates are from the basal Eocene epoch (54-55 Myr ago). The common ancestor of primates should be earlier than the oldest known fossils, but adequate quantification is needed to interpret possible discrepancies between molecular and palaeontological estimates. Here we present a new statistical method, based on an estimate of species preservation derived from a model of the diversification pattern, that suggests a Cretaceous last common ancestor of primates, approximately 81.5 Myr ago, close to the initial divergence time inferred from molecular data. It also suggests that no more than 7% of all primate species that have ever existed are known from fossils. The approach unites all the available palaeontological methods of timing evolutionary events: the fossil record, extant species and clade diversification models.  相似文献   

14.
A lamprey from the Devonian period of South Africa   总被引:2,自引:0,他引:2  
Gess RW  Coates MI  Rubidge BS 《Nature》2006,443(7114):981-984
Lampreys are the most scientifically accessible of the remaining jawless vertebrates, but their evolutionary history is obscure. In contrast to the rich fossil record of armoured jawless fishes, all of which date from the Devonian period and earlier, only two Palaeozoic lampreys have been recorded, both from the Carboniferous period. In addition to these, the recent report of an exquisitely preserved Lower Cretaceous example demonstrates that anatomically modern lampreys were present by the late Mesozoic era. Here we report a marine/estuarine fossil lamprey from the Famennian (Late Devonian) of South Africa, the identity of which is established easily because many of the key specializations of modern forms are already in place. These specializations include the first evidence of a large oral disc, the first direct evidence of circumoral teeth and a well preserved branchial basket. This small agnathan, Priscomyzon riniensis gen. et sp. nov., is not only more conventionally lamprey-like than other Palaeozoic examples, but is also some 35 million years older. This finding is evidence that agnathans close to modern lampreys had evolved before the end of the Devonian period. In this light, lampreys as a whole appear all the more remarkable: ancient specialists that have persisted as such and survived a subsequent 360 million years.  相似文献   

15.
 2016年国际古生物研究领域见证了一系列重要事件和研究热点。本文回顾2016年在地球早期生命研究、琥珀中的特异保存化石、中生代羽毛的颜色的分子证据、志留纪古鱼、早泥盆世植物根系、古DNA等研究方向的重要进展,盘点了国际古生物研究领域的前沿及热点,部分展示了中国古生物学界做出的突出贡献。  相似文献   

16.
Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans (jawless fish) and of immunoglobulin gene segments in gnathostomes (jawed vertebrates).  相似文献   

17.
Beerling DJ  Osborne CP  Chaloner WG 《Nature》2001,410(6826):352-354
The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of present-day plants is presently unresolved. Here we show, in a series of quantitative analyses using fossil leaf characters and biophysical principles, that the delay was causally linked with a 90% drop in atmospheric pCO2 during the Late Palaeozoic era. In contrast to simulations for a typical Early Devonian land plant, possessing few stomata on leafless stems, those for a planate leaf with the same stomatal characteristics indicate that it would have suffered lethal overheating, because of greater interception of solar energy and low transpiration. When planate leaves first appeared in the Late Devonian and subsequently diversified in the Carboniferous period, they possessed substantially higher stomatal densities. This observation is consistent with the effects of the pCO2 on stomatal development and suggests that the evolution of planate leaves could only have occurred after an increase in stomatal density, allowing higher transpiration rates that were sufficient to maintain cool and viable leaf temperatures.  相似文献   

18.
Morphological and ecological complexity in early eukaryotic ecosystems.   总被引:18,自引:0,他引:18  
E J Javaux  A H Knoll  M R Walter 《Nature》2001,412(6842):66-69
Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.  相似文献   

19.
Engel MS  Grimaldi DA 《Nature》2004,427(6975):627-630
Insects are the most diverse lineage of all life in numbers of species, and ecologically they dominate terrestrial ecosystems. However, how and when this immense radiation of animals originated is unclear. Only a few fossils provide insight into the earliest stages of insect evolution, and among them are specimens in chert from Rhynie, Scotland's Old Red Sandstone (Pragian; about 396-407 million years ago), which is only slightly younger than formations harbouring the earliest terrestrial faunas. The most well-known animal from Rhynie is the springtail Rhyniella praecursor (Entognatha; Collembola), long considered to be the oldest hexapod. For true insects (Ectognatha), the oldest records are two apparent wingless insects from later in the Devonian period of North America. Here we show, however, that a fragmentary fossil from Rhynie, Rhyniognatha hirsti, is not only the earliest true insect but may be relatively derived within basal Ectognatha. In fact, Rhyniognatha has derived characters shared with winged insects, suggesting that the origin of wings may have been earlier than previously believed. Regardless, Rhyniognatha indicates that insects originated in the Silurian period and were members of some of the earliest terrestrial faunas.  相似文献   

20.
Ni X  Wang Y  Hu Y  Li C 《Nature》2004,427(6969):65-68
The debut of undoubted euprimates (primates of modern aspect) was in the early Eocene, about 55 Myr ago. Since their first appearance, the earliest euprimates can be distinguished as Cantius, Donrussellia and Teilhardina. Nonetheless, the earliest euprimates are primarily known from isolated teeth or fragmentary jaws. Here we describe a partially preserved euprimate skull with nearly complete upper and lower dentition, which represents a new species of Teilhardina and constitutes the first discovery of the genus in Asia. The new species is from the upper section of Lingcha Formation, Hunan Province, China, with an estimated age of 54.97 Myr ago. Morphology and phylogeny analyses reveal that the new species is the most primitive species of Teilhardina, positioned near the root of euprimate radiation. This discovery of the earliest euprimate skull known to date casts new light on the debate concerning the adaptive origin of euprimates, and suggests that the last common ancestor of euprimates was probably a small, diurnal, visually oriented predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号