首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
以SnCl2·2H2O、聚乙二醇400(PEG400)和Na3C6H5O7·2H2O为主要原料,采用简单的水热法制备了SnO2负极材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)表征其组成和微观形貌,并采用恒流充放电测试、循环伏安法(CV)对样品进行电化学性能测试.结果表明:添加PEG400可以有效改善SnO2表面形貌,减少其团聚现象并且使其电化学性能明显提高.当添加量为10 mL时,合成的SnO2具有良好的循环及倍率性能,首次放电比容量为2 774 mAh/g,循环50次后放电比容量为600 mAh/g,电化学性能较改性前的SnO2有了明显改善.  相似文献   

2.
采用水热法制备SnS2微米花(MFs),以聚多巴胺衍生的氮掺杂碳(NC)作为还原剂和缓冲基质,合成了SnS2/SnS/NC异质结构微米花(SSNC MFs)作为钾离子电池负极材料。SnS2和SnS形成的异质界面加快了电荷的转移,进而改善了电化学动力学。同时,NC增强了复合材料的导电性和结构稳定性。因而,SSNC MFs电极在0.1 A/g下,循环50周的可逆比容量为492.4 mAh/g, 2.0 A/g下仍保持在199.6 mAh/g,远大于相同测试条件下的SnS2MFs电极(分别为132.1和28.4 mAh/g),表现出显著提升的可逆比容量、循环稳定性和倍率性能。  相似文献   

3.
碳基负极材料比容量低,无法满足高能量密度电池的需求.为了进一步寻找高容量长循环寿命的电池负极材料,采用水热反应法制备了自支撑CoMoO4负极,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的结构、形貌进行表征,利用循环伏安法和恒电流充/放电等技术对比研究了材料在锂/钠离子电池中的电化学性能.结果表明,CoMoO4负极在锂离子电池中的首次可逆比容量为1 403.6 mAh/g,首次库伦效率为146.5%,在100 mA/g电流密度下经50次循环后仍然高达793.6 mAh/g;而CoMoO4负极在钠离子电池中首次可逆比容量仅为314.2 mAh/g,但经50次循环后容量保持率仍有76.4 %.该自支撑负极无需导电剂和粘结剂,电极材料与泡沫镍结合力强,具有优异的循环稳定性.  相似文献   

4.
CuO掺杂纳米SnO2锂离子电池负极材料的合成与电化学性能   总被引:1,自引:0,他引:1  
以SnCl4·5H2O、Cu(NO3)2·3H2O和NH3·H2O为原料,采用化学共沉淀法制备了CuO掺杂的纳米SnO2粉末.运用X射线衍射、扫描电镜等手段对合成粉末进行了表征.将合成粉末作为锂离子电池负极材料,研究了其充放电容量、循环性能和交流阻抗等电化学性能.结果表明:采用化学共沉淀法可以得到平均粒度为87 nm的CuO掺杂的纳米SnO2粉末;在SnO2中掺入CuO,并没有改变SnO2的结构,但能够有效抑制SnO2粒子的长大;CuO掺杂的纳米SnO2粉末的可逆容量可以达到752 mA·g-1,经60次循环后,CuO掺杂的纳米SnO2粉末的容量保持率分别为93.6%,优于纳米SnO2 (92.0%),掺杂CuO改善了纳米SnO2的循环性能.  相似文献   

5.
以无机盐为前体,采用溶胶-凝胶法制备了纳米SnO2粉体.用TG-DTA,XRD,SEM等对SnO2粉末进行了表征.结果表明,采用该法经500 ℃热处理得到的SnO2超细粉具有良好的四方结构,粒径分布均匀,平均粒径在92 nm左右.将该法制得的SnO2超细粉作为锂离子电池负极材料,可逆容量高达687 mAh·g-1,而且嵌脱锂电压低(0.2~0.5 V),是一种很有潜力的锂离子电池负极材料.  相似文献   

6.
基于CaCO3模板法制备出具有三维分级多孔碳骨架结构SnO2@voids@C-SnO材料,并通过溶胶凝胶法进行Ni的添加.利用XRD和SEM对所得产物的晶体结构和微观形貌进行表征,并对电池进行电化学性能测试.结果表明,SnO2@voids@C-SnO材料在电流密度50 mA·g-1时首次放电比容量为1 092 mAh·g-1.添加Ni可以有效增加负极材料的比容量.当Ni质量分数达到25%时,材料的首次放电比容量达到1 414.6 mAh·g-1,70次循环后的放电比容量仍能保持617 mAh·g-1,倍率性能优良.这主要是因为Ni的添加在一定程度上避免了纳米粒子的团聚,缓解了体积膨胀带来的影响,明显改善了负极材料的电化学性能.  相似文献   

7.
利用简单的一步水热法制备高性能的镍掺杂SnO2 纳米微球锂离子电池负极材料. 利用扫描电镜(scanning electron microscope, SEM)、高分辨率透射电镜(high resolution transmission electron microscope, HRTEM)、拉曼分析仪、X射线衍射(X-ray diffraction, XRD)仪以及电化学性能测试仪器(如蓝电测试系统、电化学工作站)分别研究了镍掺杂对SnO2 微观形貌、组成、结晶行为及电化学性能的影响, 并得到了最佳反应时间. 实验结果表明:与纯SnO2相比, 镍掺杂SnO2 纳米微球表现出了更好的倍率性能和优异的循环性能. 特别地, 反应时间为12 h 的5 % 镍掺杂SnO2 在100 mA/g 电流密度下的首次放电比容量为1 970.3 mA·h/g,远高于SnO2 的理论容量782 mA·h/g. 这是因为镍掺杂可适应庞大的体积膨胀, 避免了纳米粒子的团聚, 因此其电化学性能得到了显著改善.  相似文献   

8.
利用双水解反应制备含稳定胶束H2SnO3@Fe(OH)3的胶体溶液,并在静电吸附作用下将其自组装到天然石墨表面,经水热反应构建了表面具有SnO2-FeO(OH)精细结构的石墨负极体系. 结构表征结果显示:水热反应后天然石墨表面存在致密的纳米结构包覆层,该包覆层是由超细SnO2纳米晶颗粒(粒径 < 6 nm)弥散的非晶态FeO(OH)组成. 电化学测试结果表明:在石墨表面构建SnO2-FeO(OH)精细纳米结构不仅能提升其充电/放电容量,而且还可改善其循环稳定性. 在0.1C充放电流密度下,经表面修饰的天然石墨首次充放电效率达到77.5%,循环100次后放电容量仍能维持在384.4 mAh/g,放电容量较商用天然石墨提高了23%.  相似文献   

9.
采用高温固相法合成了高钠含量的P2型层状氧化物钠离子电池正极材料Na0.93Li0.125Ni0.25Mn0.45Ti0.125Zn0.05O2(NLNMTZ).研究发现,该材料电化学曲线平滑,表现出良好的循环稳定性和出色的倍率性能.在20 mA/g下,容量高达117.6 mAh/g;在200 mA/g下,700次循环后容量保持率为80%.  相似文献   

10.
立方尖晶石结构的Li2ZnTi3O8(LZTO)具有成本低和安全性高的优势,被认为是代替碳材料作为锂离子电池负极材料的理想选择。然而,Li+和Zn2+离子位于LZTO的四面体位点,在一定程度上阻碍了离子的迁移,导致LZTO电导率差,锂离子扩散系数低。LiAlO2的包覆有效避免了电极表面与有机电解质的接触,从而减少了副反应的发生。因此,本文采用简单的高温固相法合成了Li2ZnTi3O8@LiAlO2复合材料。结果表明:LiAlO2改性未改变LZTO的形貌和粒径,但是提高了其结构稳定性、锂离子脱嵌的可逆性和电化学活性,促进了锂离子的迁移。Li2ZnTi3O8@LiAlO2 (8wt%)在0.5 C、1 C、2 C、3 C和5 C时的充电容量分别为203.9、194.8、187.4、180.6和177.1 mAh·g?1,表现出良好的倍率性能。然而,在相同的倍率下,纯LZTO仅有134.5、109.7、89.4、79.9和72.9 mAh·g?1的容量。即使在较大的充放电倍率下,Li2ZnTi3O8@LiAlO2(8wt%)材料也表现出良好的循环性能。在5 C倍率循环150次后后,Li2ZnTi3O8@LiAlO2(8wt%)仍具有263.5/265.8 mAh·g?1的充放电容量。LiAlO2的引入增强了LZTO材料的电子导电性,使Li2ZnTi3O8@LiAlO2复合材料具有优异的电化学性能。  相似文献   

11.
 作为一种N型半导体,二氧化锡基负极材料由于其拥有较高的理论比容量(782 mA·h·g-1)、高能量密度等优势受到了广泛关注。然而,由于二氧化锡负极材料在充放电过程中的体积效应和本身导电性较差等导致的其循环性能和倍率性能较差,从而制约了其作为锂离子电池负极材料的应用。本文从二氧化锡的纳米化及复合化(包括其与金属氧化物、无定型碳、碳纳米管和石墨烯等复合)2 方面综述了二氧化锡基锂离子电池负极材料的研究进展,同时对SnO2基锂离子电池负极材料的发展方向进行了展望。  相似文献   

12.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

13.
本文通过超声分散、水热生长和煅烧方法制备了新型蜂窝结构Si/Co3O4复合负极材料,在此基础上研究其复合结构与电化学性能的关系。采用X射线衍(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的物相、微观形貌进行表征,并采用电化学手段对其性能进行测试。结果表明:硅纳米颗粒主要分布于Co3O4蜂窝孔洞结构的内层;相比于纯Si负极材料,蜂窝结构Si/Co3O4复合材料具有更好的结构稳定性、倍率性能和循环性能,首次放电比容量为1475 mAh g-1,第二次维持在851 mAh g-1,经过75 次循环后放电比容量仍有 802 mAh g-1,较第二次比容量损失率仅为0.17%/周,这主要是归因于硅纳米颗粒和Co3O4之间存的空隙为Si负极嵌锂过程中的体积膨胀提供了空间,有效缓冲Si负极的体积变化。  相似文献   

14.
因为铌酸钛具有合适的放电电压平台、较长的循环寿命和较高的可逆比容量,所以其被认为是一种理想的锂离子电池负极材料,但因它导电能力差而大大限制了其实际应用.该文通过简易的喷雾干燥法制备了铌酸钛微球,然后将其分别与环糊精、蔗糖和聚乙烯吡咯烷酮混合,在氩气气氛下退火处理制备3种碳包覆的铌酸钛微球.电化学性能测试结果表明:以环糊精为碳源合成的铌酸钛微球展现出最好的倍率性能和循环稳定性,在10.00 C大电流密度下循环1 000圈后的可逆比容量保持为134.3 mA·h·g-1.  相似文献   

15.
用MgO掺杂SnO2材料(SnO2/MgO)研制了旁热式甲醛传感器,采用紫外光激发的方式使传感器能在室温下工作.利用X射线衍射仪、热场发射扫描电镜、比表面积与孔隙率分析仪对SnO2和SnO2/MgO材料进行了物相组成、微观形貌的表征和比表面积的测定,并在不同退火温度、不同紫外光照射强度下对传感器进行了性能测试.结果表明:掺杂后的材料比表面积更大、吸附能力更强,当退火温度为650 ℃、紫外光照射强度为1.75 mW/cm2时SnO2/MgO传感器的灵敏度最好.在以相同体积分数的O2、C2H6O作为干扰气体时,SnO2/MgO气敏传感器对甲醛具有良好的选择性.研究结果为探索高灵敏的甲醛检测新技术提供了参考.  相似文献   

16.
To improve the sulfur loading capacity of lithium-sulfur batteries (Li–S batteries) cathode and avoid the inevitable “shuttle effect”, hollow N doped carbon coated CoO/SnO2 (CoO/SnO2@NC) composite has been designed and prepared by a hydrothermal-calcination method. The specific surface area of CoO/SnO2@NC composite is 85.464 m2·g–1, and the pore volume is 0.1189 cm3·g–1. The hollow core-shell structure as a carrier has a sulfur loading amount of 66.10%. The initial specific capacity of the assembled Li–S batteries is 395.7 mAh·g–1 at 0.2 C, which maintains 302.7 mAh·g–1 after 400 cycles. When the rate increases to 2.5 C, the specific capacity still has 221.2 mAh·g–1. The excellent lithium storage performance is attributed to the core-shell structure with high specific surface area and porosity. This structure effectively increases the sulfur loading, enhances the chemical adsorption of lithium polysulfides, and reduces direct contact between CoO/SnO2 and the electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号