首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
页岩富含纳米孔,纳米孔气体传输不同于宏观流体流动.基于滑脱流动和克努森扩散两种传输机理,分别以分子之间碰撞频率和分子与壁面碰撞频率占总碰撞频率的比值作为滑脱流动和克努森扩散的权重系数,耦合这两种机理,建立了理想气体传输模型.同时考虑高压条件下真实气体分子间相互作用力和气体分子自身体积对气体传输的影响,建立了页岩纳米孔真实气体传输模型.模型可靠性通过分子模拟结果验证.结果表明:纳米孔真实气体传输模型能够更合理地描述所有的气体传输机理,包括连续流动、滑脱流动和过渡流动;真实气体效应对气体传输的影响可高达23%,其受压力、温度、纳米孔尺度和气体类型的控制;在室内实验条件下模拟页岩纳米孔气体传输时,用氦气代替甲烷,低估了甲烷的传输能力65.09%;用氮气代替甲烷,高估了甲烷的传输能力106.27%.  相似文献   

2.
页岩富含纳米孔,且吸附气占总气量可高达85%,因此页岩气表面扩散对气体传输具有重要的作用.页岩气藏压力高,页岩表面能量非均质性强,吸附气非等温解吸附等,均加剧了吸附气表面扩散模拟的复杂性.基于低压条件下推导的Hwang模型,考虑高压条件下吸附气覆盖度的影响,建立了页岩吸附气表面扩散模型.同时,该模型还考虑了页岩表面能量非均质性、等量吸附热和非等温解吸附对表面扩散的影响.研究表明:1)表面扩散系数随压力的增大而增大,随温度的升高而增大,随表面活化能的减小而增大,随气体分子量的减小而增大;2)黏性流动、努森扩散和表面扩散对气体传输的贡献是此消彼长的,主要受孔隙尺度和压力的控制;3)表面扩散在微孔(半径2 nm)中,对气体传输贡献大,可高达92.95%;在宏孔(半径50 nm)中,贡献低于4.39%,可忽略;在介孔(2半径50 nm)中,表面扩散的贡献介于微孔和宏孔之间.  相似文献   

3.
页岩气储层孔隙结构复杂,纳米孔隙所占比例大,而纳米孔内部气体流动机理不同于宏观流体流动,因此认识页岩气在纳米孔隙中的流动机理对页岩气的高效开采具有重要的科学意义.页岩气开采过程中,纳米孔的吸附解吸、应力敏感效应及滑脱效应使渗透率发生显著变化.为此,基于毛细管模型耦合考虑吸附变形修正应力应变的渗透率模型,在此基础上,考虑滑脱效应影响,建立页岩表观渗透率模型来描述气体流动.通过试验数据验证其合理性,并对模型相关参数对表观渗透率的影响进行讨论.研究结果表明,新建页岩表观渗透率模型能够合理地描述页岩气真实储层条件下气体的流动,考虑了吸附变形、应力敏感及应力变化下纳米孔气体滑脱效应等微观机理.在围压恒定条件下,新建模型计算出的曲线均与实测值吻合较好;随孔隙压力升高,页岩表观渗透率呈指数函数降低.两种气体的表观渗透率随平均分子自由程的增大而增大;孔径越大,在压力区间内渗透率越高,且随孔隙压力升高,渗透率逐渐降低.页岩表观渗透率对弹性模量较为敏感,弹性模量增大会导致在其压力阶段内有较高的渗透率;在孔隙压力升高过程中,裂隙压缩系数越小,渗透率越高;随温度的升高,页岩表观渗透率呈上升趋势.所建模型能为页岩气生产动态分析、产能预测和生产制度制订提供指导.  相似文献   

4.
页岩气储层纳微米孔隙、裂缝结构复杂,存在多尺度流动,气体的流动规律不同于常规气藏.本文对多孔介质内气体流动进行了研究,利用努森数划分不同尺度下气体流态,阐明了不同区域的流动机理和流动特征;综合考虑达西渗流、滑移扩散效应、井筒附近高速非达西效应等多重非线性效应,建立了页岩气储层多尺度统一流动模型.引入页岩气储层基质-压裂缝耦合两区模型,建立了页岩气储层压裂井定压条件下的两区压力分布和产能预测方程,并结合生产实例进行了参数敏感性分析.结果表明:随着滑移扩散系数、分形系数、压裂半径的增大,页岩气井产能增加,且增加幅度减小;考虑高速非达西效应较不考虑高速非达西效应时,页岩储层产能偏低,且高速非达西效应的影响小于滑移扩散对产能的影响.该模型为体积压裂页岩气产能预测及开发指标优化提供了理论依据.  相似文献   

5.
页岩具有很强的压力敏感性,围压和孔压的变化会改变页岩孔隙的大小,从而对页岩气的流动规律产生影响,利用数字岩心结合格子Boltzmann方法(lattice Boltzmann method,LBM)来研究页岩气微观渗流规律得到越来越多学者的重视.本文建立了应力条件下的数字岩心应力应变模型和页岩气渗流LBM模型,研究了应力对页岩气渗流的影响规律.研究结果表明:有机质中的纳米孔隙对应力更加敏感,随应力变化的程度相比矿物骨架孔隙更大,从而影响页岩气在纳米孔隙中的解吸和扩散;孔压对各渗流机理的影响要比围压的影响大,是因为孔压的变化不仅影响了孔隙的尺寸还影响了气体的平均分子自由程;当平均孔压从17 MPa降低到5 MPa时,解吸的气体量和通过扩散流动的气体量占总气体流量的比例不断增加,分别增加了2%和1.9%,而通过滑脱流动的气体量占总气体流量的比例不断减少,减少了3.8%.利用应力条件下的数字岩心和格子Boltzmann方法可以更精确地模拟页岩气在储层中的流动规律,更好地理解页岩气的产出机理.  相似文献   

6.
基于页岩基质的纳米尺度孔隙特征,分析了页岩气在纳米孔隙中渗流的扩散、滑脱和达西渗流等对页岩气流动流量的影响.压差作用下页岩气流量的特征研究表明:达西流动产生的流量与地层压力、压力梯度和渗透率成正比;扩散引发的流量与压力梯度成正比,与平均压力成反比,与渗透率无关;滑脱引发的流量与压力梯度、渗透率成正比,压力梯度和渗透率一定时,滑脱流量为定值,与地层平均压力无关.低压下,气体的扩散效应和滑脱效应明显,扩散产生的流量所占比例较大,高压下渗流以达西流为主;在整个从低压到高压的地层压力区间,在低压下由于扩散作用,总的页岩气有一定的流量,随着地层压力的增大扩散产生的流量减小,到一定值后随着达西流量的进一步增大,总流量随地层压力的增加而增大,说明页岩气生产中存在一个最低效生产的压力区域.水在页岩薄片上吸水过程近似分为三个阶段:(1)水在页岩薄片表面的快速吸附;(2)水在裂缝中较快速度的渗吸;(3)水沿着微裂缝的缓慢渗吸.为页岩气开发中的压裂水的反排特征研究提供了理论基础.  相似文献   

7.
页岩储层微纳米孔隙、天然裂缝发育,不同类型孔隙中气体赋存状态和传输机理各异.本文在对天然裂缝定量表征的基础上,兼顾页岩气渗流特征和实际工程应用需要,综合考虑页岩岩芯孔-缝发育特征,基于渗透率串-并联模型建立耦合基质微纳米孔隙气体滑脱效应、扩散效应和天然裂缝渗流特征的页岩气表观渗透率模型,利用四川盆地牛蹄塘组天然裂缝发育的页岩岩样对理论模型进行验证.研究结果表明,该渗透率模型即能高度拟合天然页岩岩芯渗透率实验测量结果,又准确描述了岩芯内部基质孔隙和天然裂缝共同渗流的特点,更加符合实际渗流情况.总之,本文建立的页岩天然裂缝定量表征方法和综合考虑微纳米孔隙、天然裂缝渗流特征的表观渗透率模型不仅为页岩气藏复杂裂缝网络建模提供了一种新的手段,而且进一步推动了复杂缝网页岩气藏数值模拟研究工程应用的实现.  相似文献   

8.
结合我国南方海相页岩气藏的实际,针对页岩气藏的特殊孔隙结构及多尺度流动的特征,首先由Knudsen数判断出储层主体流态为滑移流,并指出页岩气在页岩多孔介质中的传输过程是一个等温过程.然后修正了Beskok-Karniadakis二阶近似模型,建立了致密页岩气直井平面径向非稳态非线性渗流问题的数学模型.进一步应用玻尔兹曼变换将问题简化,并给出了求解压力场的数值离散显式迭代格式.最后数值计算得到了内边界定压条件下直井的压力场随时间、空间分布曲线,预测了产量随时间变化的规律,并分析了解吸、滑移和扩散效应对产量的影响.  相似文献   

9.
碳酸盐岩油藏酸化效果取决于酸蚀岩石生成的溶蚀模式,对于给定的油藏及选定的注入酸来说,溶蚀模式与酸注入地层的速度有关.在最优注入条件下,酸溶蚀岩石形成一些窄且长的蚓孔,这些蚓孔可以穿过井筒周围的污染带,大大地改善甚至是提高近井地带的渗透率.由于技术条件限制,最优注入条件只能通过岩芯尺度的实验或数值模拟得到,而将岩芯尺度的最优注入条件应用到油藏酸化施工中时,需要明确岩芯形状、尺寸比例等参数的影响.本文基于梯形流动单元,使用非结构网格对求解区域进行离散、有限体积方法对控制方程进行离散,数值求解碳酸盐岩酸化反应流模型.定义形状因子和比例因子分别表示岩芯的形状变化和尺寸比例,并研究其对酸化溶蚀模式、最优注入条件等参数的影响.结果表明:以流量表示注入条件时,岩芯形状对最优注入条件没有影响;以最优注入流量将酸液注入不同形状的岩芯得到的蚓孔结构具有相同的分形维数,说明岩芯形状对溶蚀模式没有影响;当比例因子小于1时,最优注入流量随比例因子的增加而增加,当比例因子大于1时,最优注入流量保持不变;径向流对应的比例因子处于最优注入流量保持不变的范围,因此,酸化施工优化设计时的岩芯实验,只需将酸线性地注入岩芯,而不需进行难度更大、成本更高的径向流酸化实验,但实验用到的岩芯截面直径应大于其长度,且将岩芯实验的结果应用于油藏酸化施工时,应使用流量表示最优注入条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号