共查询到19条相似文献,搜索用时 62 毫秒
1.
目前国内对大学生考研的定性研究居多,很少运用定量的方法建立分析预测模型.本文在参考其它预测体系的基础上,提出了大学生考研预测指标体系.并用三种支持向量机技术对该问题进行了预测,通过具体实例分析获得了较高的预测准确率,得到了不同核下针对该问题的最优预测模型. 相似文献
2.
基于遗传算法的最小平方支持向量机 总被引:1,自引:0,他引:1
支持向量机和最小平方支持向量机的分类中,采用人工方法选取特征子集和参数,需要付出较高的时间代价.为此,本文提出基于遗传算法的最小平方支持向量机,借助于遗传算法的全局随机搜索能力,自动确定特征子集、参数,为特征子集、参数的优化选择提供了一条有效途径. 相似文献
3.
有效的软件缺陷预测能够显著提高软件安全测试的效率,确保软件质量,支持向量机(support vector machine,SVM)具有非线性运算能力,是建立软件缺陷预测模型的较好方法,但其缺少统一有效的参数寻优方法。本文针对该问题提出一种基于遗传优化支持向量机的软件缺陷预测模型,将支持向量机作为软件缺陷预测的分类器,利用遗传算法进行最优度量属性的选择和支持向量机最优参数的计算。实验结果表明,基于遗传优化支持向量机的软件缺陷预测模型具有较高的预测准确度。 相似文献
4.
基于支持向量回归机的中国碳排放预测模型 总被引:2,自引:0,他引:2
宋杰鲲 《中国石油大学学报(自然科学版)》2012,(1):182-187
选取人口、城镇化率、人均GDP、服务业增加值比重、单位GDP能耗、煤炭消费比例等6项影响因素作为自变量,运用支持向量回归机方法构建中国碳排放预测模型。以1980—2009年碳排放及影响因素数据为样本,通过训练、测试得到具有良好学习与推广能力的支持向量回归机模型。结合"十二五"规划,设置不同情境下影响因素预测值,对2010—2015年中国碳排放进行预测。预测结果表明,中国可适当降低GDP增速,不断优化能源结构,以确保碳减排目标的有效实现。 相似文献
5.
基于支持向量机岩溶塌陷的智能预测模型 总被引:5,自引:0,他引:5
在综合分析了各种岩溶塌陷预测方法和介绍支持向量机的基础上,提出基于支持向量机的岩溶塌陷预测方法,运用Matlab语言编程,建立了相应的岩溶塌陷预测模型.以已有的岩溶地面塌陷实例为学习样本,进行学习测试,得到训练效果较佳的预测模型,并用此模型对某市岩溶塌陷进行预测.结果表明,支持向量机预测模型具有较高精度,在岩溶塌陷预测研究中具有广阔的应用前景. 相似文献
6.
提出一种基于遗传算法优化支持向量回归机的模型进行网格负载预测,使用遗传算法和交叉验证技术解决了支持向量回归机参数难以确定的问题.标准数据集仿真实验结果表明,该模型与试验法定参的支持向量回归机和BP神经网络相比具有更优的预测性能. 相似文献
7.
人脸识别身份验证技术是目前一个非常活跃的研究课题.文章针对人脸识别系统涉及到的人脸特征提取、识别验证等环节,利用K-L变换首先对人脸图像进行特征参数提取,并提出用支持向量机与遗传算法相结合的新型算法进行分类识别,利用遗传算法自动选择最优的核函数参数,将以上方法相结合的新型人脸识别方法的实验结果表明,该方法所得参数确定的SVM具有较优的识别率,其整体性能优良. 相似文献
8.
锯齿波、边缘模糊是影响图像质量的重要因素,为了有效提高图像质量,提出了一种优化支持向量机图像插值方法.先将遗传算法应用到支持向量机的参数寻优,将使用最优参数的支持向量机结合图像相关性对图像插值.算法根据图像相关性选择适当的相邻点作为输入模式训练支持向量机,用训练好的支持向量机及输入模式估计出待插值点的像素值.仿真结果表明,与已有算法相比,该算法获得图像的RPSN值、NMSE值、MSE等指标均有明显改善,且视觉效果有显著提高. 相似文献
9.
基于小生境遗传算法的支持向量机分类器参数优化 总被引:2,自引:0,他引:2
该文在建立支持向量机分类器分类性能评价函数基础上,分析了支持向量机参数对分类性能的影响,提出了一种基于共享函数小生境遗传算法的支持向量机分类器参数优化方法.该方法利用支持向量机分类性能评价函数评价支持向量机的分类性能,评价函数的倒数作为适应度值,每两个个体之间的海明距离作为共享函数,实现小生境遗传算法.将该文提出的方法应用于5个由Gunna Ratsch收集的标准模式库,实验结果表明由该方法所得参数确定的SVM分类器具有较高的识别率和较简单的结构. 相似文献
10.
基于遗传算法优化参数的支持向量机短期负荷预测方法 总被引:12,自引:1,他引:11
通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统。通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗传算法的支持向量机(GA-SVM)模型,利用此模型对短期电力负荷进行预测研究。通过实例验证,选择河北某地区2005-03-02至2007-05-22每天各个时点的数据进行分析,并且选择SVM模型与BP(Back propagation)神经网络进行对比。研究结果表明:用GA-SVM算法得到的均方根相对误差仅为2.25%,比用SVM模型和BP神经网络所得的均方根相对误差比分别低0.58%和1.93%。所提出的测试方法克服了传统参数选择方法存在的缺点(如研究者往往凭经验和有限的实验给定一组参数,而不讨论参数制定的合理性),提高了支持向量机的预测精度。 相似文献
11.
基于改进交叉验证算法的支持向量机多类识别 总被引:2,自引:0,他引:2
如何确定支持向量机最佳参数用以训练得到最优分类器,使之对未知样本同样具有良好的分类效果,一直是问题解决的关键.针对传统的交叉验证算法仅仅从全局的角度寻找极值点作为最优参数,而忽略了局部信息使得分类效果受到限制问题,提出一种改进的交叉验证算法,在考虑全局极值点的同时,也记录了局部极值点,求取全部极值点对应参数的平均值,由此得到最优参数.实验结果表明,该算法可以有效地确定最优参数,分类准确率有所提高. 相似文献
12.
13.
基于支持向量机的机械设备状态趋势预测研究 总被引:17,自引:1,他引:17
提出了用支持向量机对机械设备状态趋势进行预测的新方法,构造了相应的支持向量回归机,并分别用仿真数据和实际数据对其性能进行了验证.将该支持向量回归机应用于某机组振动信号的预测,采用径向基核函数和合适的参数,使该向量回归机对振动量峰峰值的单步预测误差小于2%,24步预测误差小于5%,表明该算法对机械设备的运行状态趋势具有较好的预测能力. 相似文献
14.
根据1990—2011年中国历年石油消费量相关数据构造输入和输出向量,选用径向基函数(RBF)作为其函数,在MATLAB2.10工具箱中设置相应变量进行参数寻优,从而建立基于支持向量机的石油需求量预测模型.为了验证其效果,同时做出了最小二乘意义下的3种预测拟合曲线,数据误差分析结果表明,支持向量机模型的预测精度高、结果更为可靠.用支持向量机模型预测了2012—2015年我国的石油需求量. 相似文献
15.
针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品的性能退化轨迹模型,然后以特定个体的历史测量时刻向量为基准,计算同类产品的相应退化测量值向量及其与特定个体退化测量值向量的Euclid距离,并根据Euclid距离确定隶属度权值,基于加权思想建立特定个体的退化轨迹模型,最后结合实时测量数据依次更新退化测量值向量、Euclid距离、隶属度权值和退化轨迹模型,实现实时寿命预测.实例分析验证了所提出的方法是有效的. 相似文献
16.
Owing to the radical changing of Chinese economy, it is essential to build an effective financial distress prediction model. In this paper, we present a genetic algorithm (GA) approach for optimizing parameters of support vector machine (SVM). We validate the proposed model on datasets of Chinese high-tech manufacturing industry. Experimental results reveal that the proposed GA-SVM model can compare to and even outperform other exiting classifiers. Compared to grid-search algorithm, the proposed GA-based takes less time to optimize SVM parameter without degrading the prediction accuracy of SVM. 相似文献
17.
GA-SVM对上证综指走势的预测研究 总被引:1,自引:0,他引:1
将支持向量机和遗传算法结合,建立了一种智能数据挖掘技术(GA-SVM),并用于对上证综指市场走势进行了探索.在这个混合的数据挖掘方法中,GA用于RBF参数的设定以及特征集的选择,从而智能的找到SVM的最佳参数,减少SVM特征值的复杂度,提高了SVM算法速度.SVM用于判断未来股票市场的走势,并与统计模型、时间序列模型方法、神经网络进行了对比.实验证明,GA-SVM优于其他几种方法,这种方法对于股票上涨或下跌的预测研究是有效的. 相似文献
18.
The use of computational-intelligence-based techniques in the optimization of agent initial positions in land combat simulations is studied. A novel method for the reduction of support vectors in the support vector machine (SVM) is presented. The optimization on the width of the Gaussian kernel function and the combination of the SVM with the radial basis function neural network are performed in the proposed method. Simulation results show that the proposed method can improve the running efficiency drastically compared with that using the traditional SVM with the same precision. We also summarize and present some experiences and trends in the study on the optimization problem in land combat simulation. 相似文献
19.
传统机器学习模型在地下水潜在性预测中,未考虑最优因子组合,会对地下水潜在性制图产生不利影响.为此,提出了遗传算法优化支持向量机的地下水潜在性预测方法.以云南省彝良县为研究区,从地形、水文、土壤、地质等方面选取了共15个影响因子;考虑模型性能和影响因子的作用,利用遗传优化算法筛选了包含11个影响因子的最优因子组合;然后使用支持向量机方法构建了地下水潜在性预测模型;最后计算了因子优化前后的模型准确度和受试者工作特性曲线下面积(area under curve,AUC),并绘制了模型的受试者工作特性(receiver operating characteristic,ROC)曲线和地下水潜在性预测图.结果表明:因子优化前模型的准确度为0.774,验证集AUC为0.789,因子优化后模型的准确度为0.777,验证集AUC为0.806,分别提高了 0.003和0.017.可见,所提方法的准确性、可靠性优于传统的支持向量机法,其结果可以为区域水文地质调查和地下水资源管理与规划提供科学参考. 相似文献