首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 785 毫秒
1.
以FeCl3·6H2O,FeCl2·4H2O和NaOH为原料,先制备磁流体 Fe3O4,再制备十二烷基苯磺酸钠(SDBS)改性海藻酸钠磁球, 通过单因素实验考察溶液pH值、 初始质量浓度、吸附时间和温度对磁球吸附水体中Cu2+的影响,并在B3LYP/6-31G**水平上模拟海藻酸钠阴离子与Ca2+和Cu2+的配位特点.  实验结果表明: 在25 ℃,吸附 80 min,初始质量浓度为100 mg/L,pH=4时,最大吸附量为116.6 mg/g;Cu2+比Ca2+的成键能力强.  相似文献   

2.
以FeCl3·6H2O,FeCl2·4H2O和NaOH为原料,先制备磁流体 Fe3O4,再制备十二烷基苯磺酸钠(SDBS)改性海藻酸钠磁球, 通过单因素实验考察溶液pH值、 初始质量浓度、吸附时间和温度对磁球吸附水体中Cu2+的影响,并在B3LYP/6-31G**水平上模拟海藻酸钠阴离子与Ca2+和Cu2+的配位特点.  实验结果表明: 在25 ℃,吸附 80 min,初始质量浓度为100 mg/L,pH=4时,最大吸附量为116.6 mg/g;Cu2+比Ca2+的成键能力强.  相似文献   

3.
 为了探讨柴胡药渣对含锌废水的吸附特性和液相pH 值、电导率变化特性,以柴胡药渣为生物吸附剂,进行了Zn2+批量吸附实验研究。分析了液相pH 值、Zn2+初始浓度(C0)、柴胡药渣加入质量浓度(ρm)、粒度(Mz)等因素对吸附效果的影响,并进行等温吸附模拟及吸附动力学相关分析。结果表明,实验室环境下的较佳的吸附条件为:pH 值为4.0~6.0,ρm 为4.0~8.0 g/L,Mz为40~100 目,C0为0.1~2.0 mmol/L。柴胡药渣对Zn2+的等温吸附结果很好符合了Langmuir 和Freunlich 吸附模型,R2分别为0.978 和0.989;计算所得最大吸附量(qmax)达到19.96 mg/g,说明柴胡药渣对Zn2+有很好的吸附能力。动力学吸附分析表明,柴胡药渣对Zn2+的吸附是一个快速进行的反应过程,二级吸附速率方程拟合结果中R2均在0.997 以上,由此认为其吸附反应过程中限速步骤是化学吸附过程。柴胡药渣对Zn2+吸附过程中液相pH 值分析表明,pH 值呈现初始阶段迅速升高后进入缓慢变化的趋势。  相似文献   

4.
经NaOH-草酸改性废弃柚子皮制得低成本柚子皮生物吸附剂.通过考察pH值、吸附剂量、铅离子初始质量浓度、吸附时间等影响因素,系统研究改性柚子皮生物吸附剂对水中Pb2+的吸附性能;利用红外光谱技术对改性前后柚子皮进行了表征,提出了NaOH-草酸对柚子皮的协同改性机制并对吸附等温线、吸附动力学以及吸附热力学进行了分析.结果表明,柚子皮经NaOH-草酸改性后,可提高羧基官能团数目,使吸附Pb2+能力提高.相同条件下,柚子皮及改性柚子皮对Pb2+的吸附容量分别是3.68 mg/g和18.76 mg/g.Pb2+初始质量浓度50 mg/L、溶液pH值5.0、改性柚子皮生物吸附剂投加量8 g/L、吸附90min时,Pb2+去除率为96.10%;Pb2+的吸附过程可以用准二级动力学模型以及Langmuir等温模型很好地描述.生物吸附剂对Pb2+的吸附是自发的吸热过程.  相似文献   

5.
自然水体生物膜胞外多糖吸附铅和镉的研究   总被引:16,自引:5,他引:11  
采用长春南湖水中优势菌种胞外多糖分别对Pb2+和Cd2+进行吸附实验, 从离子浓度、 温度、 时间、 pH值、 铅镉共存等方面对其吸附规律进行了初步研究, 结果表明, Langmuir和Freundlich方程均可描述自然水体生物膜胞外多糖吸附 Pb2+和Cd2+的热力学过程. 胞外多糖吸附Pb2+和Cd2+的动力学吸附特征符合Langmuir-Hinshelwood方程的一级反 应模式.Cd2+干扰胞外多糖对Pb2+的吸附, Pb2+也干扰胞外多糖对Cd2+的吸附.  相似文献   

6.
采用逐层(LBL)技术将氧化石墨烯(GO)包封在酵母细胞(Yeast)表面(Yeast@GO),采用光学显微镜、扫描电子显微镜(SEM)、Zeta电位对其进行了表征。Yeast@GO与Yeast的生长曲线测试结果表明,GO的包封并未对Yeast的生长产生不利影响,同时将Yeast的延滞期缩短了1/3。不同浓度的Cd2+对Yeast和Yeast@GO细胞的生长具有不同程度的抑制作用,抑制作用呈浓度依赖性。采用单细胞电感耦合等离子质谱(SC-ICP-MS)技术检测了单个Yeast和Yeast@GO细胞对不同浓度Cd2+的吸附能力,发现两种酵母细胞对Cd2+均有吸附作用,并且随着Cd2+处理浓度的升高,酵母细胞吸附的Cd2+增多;在相同的Cd2+浓度下,Yeast@GO比Yeast吸附更多的Cd2+。  相似文献   

7.
选用11种化学试剂对渗透性反应墙(PRB)反应介质草炭土进行修饰, 并分析吸附前后草炭土的微观结构. 结果表明: 经HCl,NaOH,CH3COOH,Mg2+,Na3C6 H5O7和PO3-4修饰后的草炭土吸附总石油烃(TPH)的能力降低; 经Ca2+ ,Fe3+,Cu2+,乙二胺四乙酸(EDTA)和腐植酸修饰后的草炭土吸附TPH的能力升高, 其中, 经0.100 mol/L Ca2+修饰后的草炭土去除地下水中TPH为92.26%, 其吸附规律符合Langmuir等温吸附方程, 理论最大吸附量为2.04 g/g; 吸附动力学规律遵循准二级动力学方程, 吸附60 min后达到动态平衡; 草炭土通过物理吸附和化学吸附去除石油污染物.  相似文献   

8.
将三乙烯四胺(TETA)接枝到氧化石墨烯(GO)表面,再与CS2反应,制备得到基于TETA的二硫代氨基甲酸盐改性GO材料(GO-TETA-DTC).采用红外光谱仪、元素分析仪和扫描电子显微镜对GO-TETA-DTC进行表征分析,并研究该材料对Cu2+的吸附性能,考察溶液pH值、 Cu2+初始质量浓度、吸附时间和温度对吸附效果的影响.结果表明:GO-TETA-DTC对水中Cu2+的吸附过程遵循准二级动力学方程、颗粒内扩散方程以及Langmuir方程;从Langmuir方程计算得到的GO-TETA-DTC对Cu2+的最大吸附量为294.12 mg/g;吸附过程以吸热和熵增的形式进行.  相似文献   

9.
利用柱实验, 考察了向海盐碱湿地土壤草根层吸附Pb2+和Cd2+过程中的影响因素. 结果表明, 流速和pH值对动态吸附有很大影响, 流速加快, 穿透点提前, 穿透点吸附量减小; pH增加, 穿透点滞后, 穿透点吸附量增大; Pb2+与Cd2+在吸附过程中存在竞争吸附, Pb2+对Cd2+的吸附影响较大, 而Cd2+对Pb2+的吸附影响相对较小 . 不同pH值下, Pb2+和Cd2+的动态吸附过程均可用双常数速率方 程和Elovich方程描述, 且双常数速率方程更好.  相似文献   

10.
采用振荡平衡法研究Cu2+和Pb2+两种重金属在长春地区一些典型路域植被土壤中的热力学和动力学吸附特性. 结果表明: 这两种重金属在不同土壤中的吸附等温线均符合Langmuir方程和Freundlich方程, 但Langmuir方程的拟合效果更好, 即两种重金属在不同土壤中的吸附过程更接近单分子层吸附模型; 灌木丛植被类型的土壤对Cu2+和Pb2+的饱和吸附量最大, 分别为3 429,5 311 mg/kg; 灌木丛植被类型的土壤对重金属的吸附速率最大, 由Elovich方程可知, 这与该土壤的pH值、 阳离子交换量(CEC)、 有机质含量和黏粒含量较高等理化性质有关, 且Pb2+比Cu2+更易被土壤吸附.  相似文献   

11.
选取玉米芯作为吸附剂,对废水中Cr6+进行吸附研究,因玉米芯本身吸附效果不佳,故对其进行改性。经H3PO4、NaOH、NaNO2溶液改性后的玉米芯可以使其孔隙扩展、比表面积变大,能够较高效地去除废水中Cr6+。实验结果表明:当模拟废水中Cr6+初始浓度为20 mg/L、体积为50.00 mL时,玉米芯经NaOH溶液改性后,投加量为0.040 g,pH为5.00,吸附时间为20 min时,吸附效果最佳,废水中Cr6+的去除率为96.83%。此时,改性后玉米芯吸附Cr6+的过程与Freundlich吸附等温模型和准二级动力学模型拟合度较高。  相似文献   

12.
选取玉米芯作为吸附剂,对废水中Cr6+进行吸附研究,因玉米芯本身吸附效果不佳,故对其进行改性。经H3PO4、NaOH、NaNO2溶液改性后的玉米芯可以使其孔隙扩展、比表面积变大,能够较高效地去除废水中Cr6+。实验结果表明:当模拟废水中Cr6+初始浓度为20 mg/L、体积为50.00 mL时,玉米芯经NaOH溶液改性后,投加量为0.040 g,pH为5.00,吸附时间为20 min时,吸附效果最佳,废水中Cr6+的去除率为96.83%。此时,改性后玉米芯吸附Cr6+的过程与Freundlich吸附等温模型和准二级动力学模型拟合度较高。  相似文献   

13.
以城市污水处理厂剩余污泥为原料,热解制备生物炭基质,经Fe2+/Fe3+改性加载纳米级铁氧化物颗粒,得到新型磁性生物炭材料(MBC),用于水体中重金属离子吸附.利用VSM,SEM-EDS,XRD,FTIR等综合分析磁性生物炭材料的物理化学特性,结果表明:生物炭基质表面加载磁性γ-Fe2O3颗粒,分布均匀,其饱和磁化强度达13.53Am2/kg.磁性生物炭投加量1.25g/L、吸附时间24h、水体pH为5.0时,Cu2+吸附量为67.68mg/g,较生物炭基质吸附量增加60.08%.磁性生物炭吸附过程符合Langmuir吸附等温线、准二级吸附动力学模型.污泥基磁性生物炭吸附效果显著,兼具便于从水体中分离的优势,可实现“以废治废”的环保目标.  相似文献   

14.
对腐殖酸改性前后表面理化性质的改变及其对水中镉离子的吸附性能进行了研究。结果表明,改性后腐殖酸比表面积和孔结构均有明显改善,吸附能力增强。吸附实验结果表明:随着pH的增大,改性后腐殖酸对镉离子的吸附量增加,在pH约为6时,吸附效率达到最大并趋于稳定; 改性后腐殖酸对镉离子的吸附最高可达20 mg/g,吸附等温线用Langmuir模型拟合最佳。吸附再生实验表明,改性腐殖酸吸附剂具有不易损失、易再生的特点,可以循环使用。  相似文献   

15.
利用SEM,ASAP2000M和FTIR对高温改性前后的椰壳活性炭的表面性能进行检测分析,并通过吸附铝电解质熔盐中K~+的实验对吸附动力学过程进行分析,研究高温改性对活性炭表面性能的影响和高温改性后活性炭吸附熔盐中K~+的性能.表面性能检测的分析结果表明,活性炭经过高温改性后比表面积由918 m~2/g提升至2 544 m~2/g,表面孔径分布得到优化,并且具有去除表面杂质的作用;同时,高温改性前后活性炭的表面官能团种类没有发生明显变化,说明高温改性后的活性炭能够在铝电解质熔盐中保持稳定的结构.吸附实验数据的分析结果表明,活性炭在铝电解质熔盐中吸附K~+的过程符合准二级动力学模型;并且,经35 min后达到吸附平衡,K~+最大吸附量为20.8 mg/g.  相似文献   

16.
以搅拌釜为反应装置,直接染料靛蓝胭脂红(IC)为目标污染物模拟染料废水,比较了Mn2+、Fe2+、Cu2+、Zn2+、Ag+、Mg2+ 6种金属离子活化过硫酸钠降解IC的效果。研究结果表明Fe2+对过硫酸钠的活化效果最好。通过对Fe2+活化过硫酸钠处理IC的条件进行优化发现,当温度为25℃、pH为7.3、IC质量浓度为200 mg/L、Na2S2O8浓度为0.8 mmol/L、Fe2+的浓度为0.8 mmol/L时,靛蓝胭脂红的脱色率可在5 min内达到100%。  相似文献   

17.
以大孔吸附树脂SD300为载体, 采用原位高锰酸钾氧化还原法将锰氧化物负载其上, 制备了新型锰氧化物?吸附树脂复合材料Mn-SD300, 并对其吸附水中Cd2+和Cu2+的性能进行了研究。TEM, XRD以及XPS的分析结果表明, 负载的锰氧化物以MnO2的形态存在。静态吸附实验结果表明Mn-SD300对Cd2+和Cu2+具有良好的吸附性能。吸附行为均符合准一级动力学模型(R2>0.99)和Langmuir吸附等温线模型(R2>0.99), 温度为303 K时, Mn-SD300对Cd2+和Cu2+的饱和吸附容量可分别达到76.92 mg/g和142.86 mg/g。在高浓度竞争离子Ca2+, Mg2+和Na+共存的情况下, Mn-SD300对Cd2+和Cu2+的吸附选择性要强于传统阳离子交换树脂D001。  相似文献   

18.
从土壤中筛选得到一株类芽孢杆菌A9,所产微生物絮凝剂MBFA9对水中Pb2+具有较高的去除作用,并进一步考察了MBFA9对Pb~(2+)的吸附动力学和热力学过程.结果表明:当水中初始Pb2+质量浓度为56.20 mg/L,MBFA9吸附25 min后的去除率最高可达92.73%;MBFA9捕集Pb2+的理论最大值为196.08 mg/g,吸附速率常数k2为0.019 g/(mg·min),动力学特征符合准二级动力学模型,其等温吸附模型与Langmuir方程拟合较好,相关系数R2=0.96;结合红外光谱检测、场发射扫描电镜和能谱分析,探讨了M BFA9去除Pb2+的机理为其表面的官能团如羟基、酰胺基、羧基等在捕集Pb2+过程中与之发生配合作用,对Pb2+的去除贡献了重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号