首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了提高玉米芯活性炭对CO2气体吸附性能的方法和途径,对自制的玉米芯活性炭进行了氧化改性和还原改性.改性后C元素质量分数都减少了10%左右.经硝酸和硝酸盐氧化改性后其表面含氧官能团明显增多;经碳酸盐碱性还原改性后引入了CO2-3根;经氨水碱性还原改性后引入了大量氨基基团,表明成功地对制备的玉米芯活性炭进行了氧化和还原改性.其中,利用Ca(NO3)2改性后样品对CO2的吸附量比改性前提高了21.2%;经过Na2CO3改性后样品对CO2的吸附量提高了28.5%.因此,制备的玉米芯活性炭经过Na2CO3改性后更有利于其应用于CO2吸附分离.  相似文献   

2.
研究了用H2O2,HNO3加醋酸铜溶液进行表面改性后的活性炭对CO2的吸附性能,分析了改性前后活性炭的表面化学性质,测定了273 K下的吸附等温线,用D-A方程对吸附等温线进行了很好的拟合,探讨了表面改性对活性炭表面化学性质的影响及其表面化学性质与吸附性能之间的关系.  相似文献   

3.
应用浸渍法,采用Fe3+、Cu2+和Ag+对高比表面活性炭(AC)进行改性,制备出3种改性的AC(Fe3+/AC、Cu2+/AC和Ag+/AC).采用静态吸附法测定改性AC吸附乙腈溶液中二苯并噻吩(DBT)的吸附等温线,应用程序升温脱附法(TPD)测定DBT在未改性AC及3种改性AC上的脱附峰面积,并采用Boehm滴定法测定这4种吸附剂的表面总酸性基团含量.结果表明:与未改性的AC相比,Fe3+/AC、Cu2+/AC和Ag+/AC表面的总酸性基团含量增加,其对乙腈溶液中DBT的吸附容量也增大;各吸附剂表面的总酸性基团含量顺序为Fe3+/AC>Cu2+/AC>Ag+/AC>未改性AC,它们对乙腈溶液中DBT的吸附能力在298K下分别提高了30%、20%、14%.以上结果表明AC类吸附剂的吸附容量与其表面的酸性基团含量成正比;应用浸渍法可提高吸附剂表面的酸性基团含量,从而增加吸附剂表面吸附乙腈溶液中DBT的吸附活性位,提高对DBT的吸附能力.  相似文献   

4.
为了了解木质活性炭酸碱连续改性前后其表征变化及对水中苯酚的吸附机理,对市售木质活性炭进行先酸(12mol/L HCl)后碱(1mol/L NaOH)改性处理,测定了改性前后其表面灰分变化并进行了红外光谱(FTIR)分析,并对改性前后活性炭吸附水中苯酚的动力学进行了研究.结果表明,经酸碱改性后,活性炭表面灰分含量降低了37.5%;增加了活性炭表面官能团累积双键(=C=C=C=)和三键(-C≡C-)的数量;常温下,二级动力学模型能更好地模拟木质活性炭对水中苯酚的吸附过程.  相似文献   

5.
过氧化氢改性活性炭对三甲胺废气的吸附   总被引:3,自引:0,他引:3       下载免费PDF全文
对煤质柱状活性炭进行H2O2改性,测试了H2O2改性前后活性炭的比表面积和含氧官能团,研究了其对三甲胺的静态吸附量、动态穿透曲线、脱附活化能。结果表明,经氧化改性后活性炭的表面含氧官能团、比表面积均有明显提高,其中以体积分数为15%的H2O2溶液浸渍1.5h后的活性炭最佳。其对三甲胺的吸附量达到440.9mg/g,较改性前提高了281.5%。对三甲胺的动态吸附穿透时间由10min提高到35min,脱附活化能由11.461kJ/mol提高到15.663kJ/mol,改性后活性炭的吸附性能得以提高。  相似文献   

6.
利用SEM,ASAP2000M和FTIR对高温改性前后的椰壳活性炭的表面性能进行检测分析,并通过吸附铝电解质熔盐中K~+的实验对吸附动力学过程进行分析,研究高温改性对活性炭表面性能的影响和高温改性后活性炭吸附熔盐中K~+的性能.表面性能检测的分析结果表明,活性炭经过高温改性后比表面积由918 m~2/g提升至2 544 m~2/g,表面孔径分布得到优化,并且具有去除表面杂质的作用;同时,高温改性前后活性炭的表面官能团种类没有发生明显变化,说明高温改性后的活性炭能够在铝电解质熔盐中保持稳定的结构.吸附实验数据的分析结果表明,活性炭在铝电解质熔盐中吸附K~+的过程符合准二级动力学模型;并且,经35 min后达到吸附平衡,K~+最大吸附量为20.8 mg/g.  相似文献   

7.
利用玉米秸秆制备活性炭,并对其进行H2SO4/H2O2改性;再运用BET模型和Boehm滴定法测定活性炭孔隙结构和表面性质,研究其改性前后对甲苯的吸附性能、脱附性能、表面性质和孔隙结构的变化。结果表明,经H2SO4/H2O2改性后,活性炭表面酸性官能团含量提高150.4%,碱性官能团含量基本不变,比表面积与孔容降低,对甲苯的吸附量降低。  相似文献   

8.
探讨了硫酸改性活性炭的制备方法,以及改性炭吸附去除水中Cr(VI)的效果、条件与作用机理.结果表明,硫酸改性活性炭制备方法为:将5 g原炭浸泡在100 mL浓度为1 mol/L的硫酸溶液中改性时间4 h,改性温度60℃.改性炭吸附去除Cr(VI)的最佳方式为:溶液pH值3-5,改性炭投加比为1:100(重量比),(补充单位),Cr(VI)去除率为95.6%(较原炭提高了19.6%).改性炭强化Cr(VI)去除的机理主要是:改性炭表面酸性基团含量显著增加,表面极性和亲水性增强,因而对亲水性的Cr2O72-离子吸附能力增强;且活性炭在改性过程中表面形成了大量带正电荷的基团,强化了与Cr2O72-负离子的异电吸附作用.  相似文献   

9.
不同方法改性柚皮制备的活性炭吸附亚甲基蓝试验   总被引:1,自引:0,他引:1  
采用不同方法对柚子皮改性后制备活性炭,考察溶液pH值、活性炭投加量、亚甲基蓝初始质量浓度、吸附时间等因素对吸附效果的影响,并对吸附动力学和吸附机理进行了探讨。结果表明,在最佳条件下未改性和采用氯化铝、硫化钠、氢氧化钾改性柚子皮制备的4种活性炭对亚甲基蓝的脱色率分别为84.5%、87.3%、91.1%和95.5%。分析不同活性炭平衡吸附量的值可以得出结论:经过氯化铝和氢氧化钾改性的柚子皮制备的活性炭吸附亚甲基蓝的能力明显提高;4种活性炭对亚甲基蓝的吸附过程均符合准二级动力学模型;氯化铝和氢氧化钾改性柚子皮制备的活性炭表面包含更多的有机官能团,这与活性炭对应较高的亚甲基蓝废水初始质量浓度和高的平衡吸附量是一致的。  相似文献   

10.
以磷酸法活性炭(PAC)为原料,通过不同铁盐溶液浸渍法制备载铁改性活性炭(Fe-PAC),采用二苯碳酰二肼分光光度法检测其对水中Cr(Ⅵ)的吸附效果,考察了铁盐浓度、溶液pH值等因素对吸附效果的影响,研究了吸附平衡时间、吸附动力学,利用XPS、BET等方法对改性活性炭进行表征。结果表明:硫酸亚铁溶液浸渍改性活性炭对Cr(Ⅵ)吸附最佳,硫酸亚铁溶液浓度为0.20mol/L,载铁改性后活性炭对水中Cr(Ⅵ)的吸附量从10.18mg/g提高到22.56mg/g;溶液pH值为2.0时,Cr(Ⅵ)去除率达到95%;通过XPS检测改性后活性炭表面负载有二价铁及三价铁氧化物;吸附动力学实验表明改性活性炭对Cr(Ⅵ)的吸附符合伪二级动力学方程,以化学吸附占主导;采用氮气吸附等温线对其比表面积及孔隙分布分析,结果表明由于铁氧化物堵塞孔隙,改性后活性炭的比表面积减小。  相似文献   

11.
活性炭对印染废水中碱性紫的吸附作用   总被引:4,自引:0,他引:4  
用活性炭吸附模拟废水中的碱性紫染料,研究pH值对吸附性能的影响,得出当pH值为8~10时,对碱性紫的去除率最大.酸性、中性和碱性条件下的饱和吸附量(mg.g-1)分别为233.57、260.38和507.17.同时用KOH进行改性,借助红外光谱表征改性前后活性炭表面官能团的变化,并测定改性后活性炭的吸附等温线.结果表明,KOH的改性使活性炭表面带有更多的碱性基团,增加了吸附活性位,提高对碱性紫的吸附量,中性条件下饱和吸附量达350.77 mg.g-1,比改性前提高35%,吸附等温线符合B.E.T方程.  相似文献   

12.
以磷酸法活性炭(PAC)为原料,通过不同铁盐溶液浸渍法制备载铁改性活性炭(Fe-PAC),采用二苯碳酰二肼分光光度法检测其对水中Cr(Ⅵ)的吸附效果,考察了铁盐浓度、溶液pH等因素对吸附效果的影响,研究了吸附平衡时间、吸附动力学,利用XPS、BET等方法对改性活性炭进行表征。结果表明:硫酸亚铁溶液浸渍改性活性炭对Cr(Ⅵ)吸附最佳,硫酸亚铁溶液浓度为0.20 mol/L,载铁改性后活性炭对水中Cr(Ⅵ)的吸附量从10.18 mg/g提高到22.56 mg/g;溶液pH为2.0时,Cr(Ⅵ)去除率达到95%。通过XPS检测改性后活性炭表面负载有二价铁及三价铁氧化物;吸附动力学实验表明改性活性炭对Cr(Ⅵ)的吸附符合伪二级动力学方程,以化学吸附占主导。采用氮气吸附等温线对其比表面积及孔隙分布分析,结果表明由于铁氧化物堵塞孔隙,改性后活性炭的比表面积减小。  相似文献   

13.
苯酚在改性活性炭上的脱附活化能   总被引:3,自引:0,他引:3  
探讨了金属离子改性活性炭对苯酚脱附活化能的影响.通过浸渍法分别将6种金属离子负载在活性炭表面,应用程序升温脱附技术测定了苯酚在系列改性活性炭上的脱附活化能,应用软硬酸碱理论分析和讨论了活性炭表面负载不同金属离子对苯酚脱附活化能的影响.结果表明,苯酚在A l(Ⅲ)/AC、Mg(Ⅱ)/AC、Fe(Ⅲ)/AC、Ca(Ⅱ)/AC上的脱附活化能高于其在原始活性炭上的脱附活化能,而它在Ag(Ⅰ)/AC、Cu(Ⅱ)/AC上的脱附活化能低于其在原始活性炭上的脱附活化能.根据软硬酸碱理论分类,苯酚属硬碱.在活性炭表面分别负载硬酸类金属离子Al3 、Mg2 、Fe3 和Ca2 ,会增大活性炭表面的局部硬酸度,提高对苯酚的吸附能力;Ag 属软酸,负载Ag 离子降低了活性炭表面的局部硬酸度,从而降低了其对苯酚的吸附能力;Cu2 离子属交界酸,负载Cu2 离子降低了活性炭表面的交界酸度,也在一定程度上减少了表面对苯酚的吸附能力.  相似文献   

14.
商业活性炭分别经过1mol/L的硝酸、盐酸、硫酸处理.采用Boehm滴定、傅式转换红外光谱仪(FTIR)、比表面积分析仪对活性炭样品的物化性质进行测试.以甲苯为吸附质,在283K下进行了固定床吸附实验.研究讨论了改性前后活性炭对甲苯的吸附量影响,计算了相应的动力学参数和吸附能.结果表明:酸改性可以增加活性炭表面酸性官能团的总数量;改变孔径分布.酸改性活性炭对甲苯的吸附量大小顺序为:N-AC,S-AC,AC,Cl-AC.准二阶动力学方程比准一阶动力学能更好地描述甲苯在改性活性炭上的吸附过程;酸改性增大了微孔占有率,提高了吸附速度;酸改性增大活性炭吸附有机气体的吸附能,导致酸改性活性炭与甲苯结合度降低.  相似文献   

15.
利用4种化学试剂(HNO3溶液、NH3溶液、H2O2溶液与Fe(NO3)3溶液)对商业活性炭进行化学氧化改性。在含5%氧气和95%氮气的混合气体中,对改性活性炭进行热复合氧化改性。采用热重分析仪、孔隙分析仪、傅里叶红外分析(FTIR)与Boehm滴定对活性炭结构与表面基团进行测试,并利用改性活性炭对甲苯进行等温吸附实验。研究结果表明:强氧化剂预处理活性炭有助于热复合氧化改性中活性炭微孔孔容的增大;活性炭表面含氧基团由化学氧化改性和热复合氧化改性共同作用产生,热改性温度较低时,其主要由化学氧化改性生成,温度较高时,酸性基团主要来源于氧气与活性炭表面的氧化反应;酸性基团的存在能够促进活性炭吸附甲苯;控制合理的热复合氧化改性条件,既可以增加活性炭表面酸性基团,又可扩充微孔孔容,从而综合提升活性炭对甲苯的吸附能力。  相似文献   

16.
为了提高活性炭在高湿地区对气态碘的吸附性能,采用十三氟辛基三乙氧基硅烷为疏水改性剂,椰壳活性炭为载体,对活性炭进行疏水改性。首先利用接触角分析仪、扫描电子显微镜(scanning electron microscope,SEM)、比表面积分析、能谱分析(energy dispersive spectroscopy,EDS)等手段表征其结构和疏水性能。然后通过气态碘的吸附实验探究改性活性炭在高湿环境下对气态碘的吸附性能,同时考察了温度、速度对其吸附性能的影响规律。表征结果表面,改性处理后的活性炭对水的静态接触角为152°疏水性良好,扫描电子显微镜、能谱分析均证实活性炭表面覆盖了疏水薄膜且疏水改性对活性炭的孔隙结构影响小。实验结果表明,改性后的活性炭具有良好的选择吸附性。环境湿度的增加对活性炭吸附性能影响较小,随湿度增加活性炭对气态碘的吸附量仅下降了20.02%,而改性前的活性炭吸附量下降了78.26%,改性前后最大吸附系数差值为99.94 mg/g。气流温度、速度和压力对吸附性能产生一定影响,过高的温度和速度会使活性炭的吸附能力下降,压力的增加会使活性炭的吸附能力上升。  相似文献   

17.
采用浓硫酸,浓硝酸,30%过氧化氢以及高锰酸钾溶液作为氧化剂,氧化改性活性炭以提高其对于水相中磺胺类抗生素的吸附能力.研究微波改性,浸渍改性,回流改性和超声辅助改性四种氧化方法对于活性炭吸附磺胺类抗生素能力的改善.实验结果表明,四种氧化剂氧化改性活性炭对于磺胺类抗生素的去除率均有明显提高,硝酸和硫酸改性可使去除率达到90%以上,但硫酸改性更适合大规模工业生产.回流改性是四种改性方法里最优的氧化方法.红外光谱和扫描电镜表征实验结果表明硫酸氧化改性会增加活性炭表面极性,但是会使微孔容积减小,由此推断这一吸附过程为化学吸附占主导地位.  相似文献   

18.
还原改性活性炭吸附染料废水及其吸附动力学   总被引:1,自引:1,他引:0  
采用高温氮气、氨水还原改性椰壳活性炭,以增强活性炭表面的非极性。通过BET(Brunauer Eunett,Teller)比表面积、孔径分布、元素分析、FT-IR,零电荷点(pHpzc)等对改性活性炭的孔结构和表面化学性质进行表征。采用静态吸附实验研究了改性活性炭对染料废水的吸附性能。结果表明活性炭通过高温氮气、氨水还原改性能够提高活性炭的表面极性;;并且能够增加活性炭孔数量提高比表面积。500℃氮气氛围和15%氨水还原改性,活性炭的非极性吸附得到显著提高,比原料炭的脱色率提高了22.7%、19.1%;COD的去除率达到96.9%,96.3%。动力学研究表明,改性活性炭对染料废水的吸附符合准二级动力学模型。  相似文献   

19.
采用硝酸(HNO_3)和氢氧化钠(Na OH)对活性炭表面进行改性,并考察其对乙酰水杨酸(ASP)的吸附性能。借助傅里叶红外光谱(FTIR)和扫描电镜(SEM)对改性活性炭结构特性进行表征,考察孔隙结构和官能团与吸附性能的关系,推断改性活性炭中对ASP起主要作用的官能团是含氧官能团。结果表明,两种改性活性炭对ASP均有良好的吸附效果;与Freundlich方程相比,吸附过程更适合用Langmuir方程来进行描述;也表明了活性炭对ASP的吸附属于单分子层吸附。改性后活性炭的最大吸附量可达到96.129 8 mg/g,且吸附过程更符合二级动力学方程。  相似文献   

20.
为探讨改性活性炭吸附有机气体性能的影响,商业活性炭分别经过1 mol/L的硝酸、盐酸、硫酸,600,700和800℃处理.通过Boehm滴定、傅式转换红外光谱(FTIR)、比表面积分析仪对活性炭样品的物化性质进行测试.以二氯乙烷为吸附质进行吸附实验研究,结果表明:酸改性样品的表面酸性官能团数量增加,热改性样品的表面碱性官能团数量增加;热改性比酸改性更有效的优化活性炭的孔结构;增大活性炭的理论有效孔容是提高二氯乙烷吸附量的有效途径,表面官能团的增加可以促进活性炭对二氯乙烷的吸附作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号