首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
文[1]对一道习题给出了四种证法,本文给出一种更为简洁的证法。设y(x)在[0,+∞)上可微,且lim[y′(x)+y(x)]=0,求证limy(x)=0.证明:由洛必大法则(见[2]第185页),  相似文献   

2.
本文将指出《数学分析中的典型例题和解题方法》一书(以下简称*)中,关于Stolz定理的推广的一个疏忽,并提出修改意见,同时给出该定理证明的一些补充. 兹将*中(∞/∞型)Stolz定理的推广引述如下: 设T为正常数,若函数g(x),f(s),x∈[a,+∞)满足: (1)g(x+T)>g(x),x∈[a,+∞); (2)lim g(x)=+∞,f(x),g(x)在[a,+∞)的任意子区间上有界;x→+∞ (3)lim{[f(x+T)-f(x)]/[g(x+T)-g(x)])=l.  相似文献   

3.
考虑二阶线性常微分方程 y″(x)+P(x)y(x)=f(x), (1)称方程(1)的某一解y(x)在[0,+∞)上振动,如果对任意的T>0,则y(x)在[T,+∞)上必有零点。否则,如果存在T>0,使当x>T时y(x)>0(<0),就称y(x)为最终正解(负解)。文献[1]证明了若在[0,+∞)上P(x)>0,f(x)>0,P′(x)≥0,f′(x)≤0,则方程(1)的满足初值条件y(0)=y′(0)=0的解必振动。本文建立了一个判定方程(1)满足初值条件y(0)=y′(0)=0的解振动的不等式,这一不等式并不要求P′(x)≥0一定成立,另外,我们给出P(x)>0,P′(x)≤0时的比较定理。  相似文献   

4.
本文研究了如下的奇Cauchy问题:我们所得到的主要结果是:若y≠0时,a,b,c,f∈c~1,而且存在充分小的正数δ,成立估计式则当τ(x)≡0,v(x)≡0时,问题(1)(2)存在着唯一的正则解u(x,y)∈D_1[u]≡{u(x,y)|u=0(1)y~(3-m/2)}.若把关于f的条件改为D_2[u]≡{u(x,y)|u=O(1)y~(2-m/2)}.这时系数a,b,c在y→0~+时还允许有奇性,因此在00,00也可以类似地得到上面的结果.  相似文献   

5.
<正>运用导数求函数的切线方程是高中数学教学中的重要内容,是近几年高考热点之一。下面对y=ax3+bx2+cx+d(a≠0)上的点如何求切线进行讨论。定义1函数f(x)在(a,b)内可导,若曲线y=f(x)位于其点处切线的上(下)方(如图1或图2),则称曲线y=f(x)在(a,b)内是向下凸(向上凸)的。  相似文献   

6.
考虑塑性流体的下列边界退化椭圆问题f1(u)uxx+uyy+g(u)|▽u|q+f(u)=0,(x,y)∈Ωu|Ω=0,(x,y)∈Ω经典解的存在性及其正则性.其中Ω={(x,y):x2+y2<1}R2,0相似文献   

7.
用正算子扰动方法和锥上的不动点指数理论讨论具有非线性导数项的二阶常微分方程■正2π-周期解的存在性,其中:a:?→(0,+∞)连续,以2π为周期;f:?×[0,+∞)×?→[0,+∞)连续,f(t,x,y)关于t以2π为周期.在非线性项f(t,x,y)满足适当的不等式条件下,得到了该方程正2π-周期解的存在性.  相似文献   

8.
运用分析的方法,简化了线段上的连续自映射的Li-Yorke混沌定义:设,是线段,到自身的连续自映射,若存在,中不可数子集S,任意x,y∈S,使得:(B1)↑lim n→∞|f^n(x)-f^n(y)|&gt;0;(B2)lim ↑n→∞|f^n(y)|=0;其中x≠y,f^0(x)=x,f^1(x)=f(x),…,f^n+1(x)=f(f^n(x)),n∈N,则f是Li-Yorke混沌的.从而使得该定义更加简单明了。  相似文献   

9.
如果函数y=f(x),在[a,b] 内连续,在区间(a,b)内可微,则有 f(b)-f(a)/b-a=f′(ξ) 其中ξ∈(a,b),b>a这时设y=f′(ξ)是[a,b]上的有界函数,则有如下结论:(1)若f′(ξ)≥m f(b)-f(a)≥(b-a)m(2)若f′(ξ)≤m f(b)-f(a)≤(b-a)m(3)若n≤f(ξ)≤m n(b-a)≤f(b)-f(a)≤m(b-a)  相似文献   

10.
奇异方程x″+p(t)f(x)+q(t)g(x′)=0的可解性   总被引:1,自引:0,他引:1  
设p(t),q(t)∈C((0,1),(0,+∞)),f(x),g(y)∈((0,+∞),(0,+∞)),并且满足下列条件(1)f(x)是x的减函数,存在正数b>0,使得f(rx)≤r-bf(x),对任意(r,x)∈(0,1)×(0,+∞),limx→0+xbf(x)>0;(2)g(y)是y的减函数,limy→0+g(y)=+∞.则下列奇异边值问题x″+p(t)f(x)+q(t)g(x′)=0,0<t<1,x(0)=x′(1)=0.有唯一C1[0,1]正解的充分必要条件是t-bp(t)∈L1[0,1],q(t)∈L1[0,1].  相似文献   

11.
IntroductionThe stability of the zero solution for the second ordernonlinear differential equations disturbed with delays·x·(t) +p(t) x·(t) +q(t)x(t) +f(t , xt) =0,t≥τ(1)was considered in the paper , wherep( t)andq( t)arecontinuous on[τ,+∞) ,f ( t ,)is continuous on[τ,+∞)×C, C≡C([-r ,0] , R),for||≡sup|(θ)|,∈C, xt∈Cis defined byxt(θ)=x(t+θ) ,θ∈[-r ,0] .Iff≡0,the equation (1) becomes the ordinary differentialequation·x·(t) +p(t) x·(t) +q(t)x(t) =0. (2)The zero so…  相似文献   

12.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

13.
Let q be an integer, f(x)=a_kx~k+…+a_1x+a_0 be a polynomial withintegral coefficients and (a_1,…,a_k,q)=1. Also set Ss(q,f(x))=sum from x=1 to q e~(2πif(?)lq) (1) In 1940, Hua Loo Keng~([1]) first obtained that S(q,f(x))=O(q~(1-1/k+(?))), (2)where the exponcnt 1-1/k is best possible. Since then many mathematicians have sought to improve the constant implied by O in (2). The best two results were obtained by Chen Jing run~([2] and ~[3] in 1977. The result of [2] is  相似文献   

14.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

15.
研究二阶线性齐次微分方程边值问题{y″+p(x)y’+q(x)y=0,[Ey+(1+EF)y’]x=a=D,[Gy+Hy’]x=b=0,其中,D、E、F、G、H、a和b均为已知的实常数,且D≠0,G2+H2≠0,a相似文献   

16.
设P(x)、f(x)∈C~1[0,+∞),在[0,+∞)上P(x)>0,P′(x)≥0。本文建立了方程y″(x)+P(x)y(x)=f(x)非振动解界的估计并得出有关振动性结果。  相似文献   

17.
从曲线y=f(x)的直渐近线问题出发,拓展性地研究了曲线y=f(x)的曲渐近线问题,给出了曲线y=f(x)的曲渐近线的定义、判别和性质定理,且得到了求曲线y=f(x)的几类常见的曲渐近线的方法.  相似文献   

18.
双曲线有一条几何性质中谈到,双曲线夹在渐近线内,逐渐接近于它而不与它相交。中心在原点,焦点在x 轴上的双曲线的渐近线方程是y=±(b/a)x,而中心在原点,焦点在y 轴上的双曲线的渐近线方程是y=±(a/b)x,这条性质不难理解,但在应用,比如在解由双曲(?)的渐近线、切线求双曲线方程这类问题时,往往出现错误。本文就这类问题进行讨论研究,试提出解此类问题的方法.先看一个具体的例题:双曲线的渐近线方程是y=±2x,它的一条切线方程是x y-1=0,试求此双曲线的方程。不少学生是这样解的:  相似文献   

19.
证明了(0,p(D))三角插值多项式Rn(x)的s(s=0,1,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,…,q)阶导数:设f(x)∈C2π,f(x)具有q阶连续导数,且f(q)(x)∈Lipα.0<α<1,若βk=Op(in)n(n)-f(s)(n)=Olnnnq+α,(k=0,1,2,…,n-1),则R(s)nq-s+α(s=0,1,…,q).  相似文献   

20.
一类Hilbert型奇异积分算子的范数及其应用   总被引:1,自引:0,他引:1  
设ω=x(p-1)(λ-1)+(a-b)p,ω1=x1-λ+(a-b)p,定义Hilbert型奇异积分算子Tλ:(Tf)(y)=∫0+∞max{f(xxλ),yλ}dx y∈(0,+∞)证明了Tλ是Lωp1(0,+∞)到Lωp(0,+∞)的有界线性算子,并得到了Tλ的范数表达式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号