首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Kuno  P Gardner 《Nature》1987,326(6110):301-304
Hydrolysis of membrane-associated phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)-P2) to water soluble inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is a common response by many different kinds of cells to a wide variety of external stimuli (see refs 1 and 2 for review). Ins (1,4,5)P3 is a putative second messenger which increases intracellular Ca2+ by mobilizing internal Ca2+ stores, a hypothesis which has been substantiated by studies with chemically permeabilized cells and with isolated microsomal membrane fractions. But the possibility that Ins(1,4,5)P3 could induce in intact cells an influx of external Ca2+ through transmembrane channels, originally hypothesized by Michell in 1975, has never been directly tested. We report here single-channel recordings of an Ins(1,4,5)P3-activated conductance in excised patches of T-lymphocyte plasma membrane. The Ins(1,4,5)P3-activated transmembrane channel appears to be identical to the recently described mitogen-regulated, voltage-insensitive Ca2+ permeable channel involved in T-cell activation. We suggest that Ins(1,4,5)P3 acts as the second messenger mediating transmembrane Ca2+ influx through specific Ca2+-permeable channels in mitogen-stimulated T-cell activation.  相似文献   

2.
Inositol 1,4,5-trisphosphate (Ins P3) is a second messenger releasing intracellular Ca2+ into the cytosol. It has recently been proposed that inositol 1,3,4,5-tetrakisphosphate (Ins P4), which is formed from Ins P3 by Ins P3-3-kinase, acts with Ins P3 as a second messenger by promoting extracellular Ca2+ entry. It has been suggested that Ins P3 itself can act to stimulate Ca2+ uptake from the extracellular fluid, although a physiological function for Ins P4 was not excluded. Transmembrane currents can now be measured in single cells by voltage clamping under conditions where the intracellular perfusion fluid can be changed several times during individual experiments. We have used this method to test the effects of Ins P3 and Ins P4 on the Ca2+-activated K+ current, and now show that neither Ins P3 alone nor Ins P4 alone can activate a sustained current, whereas Ins P3 and Ins P4 in combination evoke a sustained increase in Ca2+-activated K+ current which is dependent on external Ca2+.  相似文献   

3.
R F Irvine  A J Letcher  J P Heslop  M J Berridge 《Nature》1986,320(6063):631-634
Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptor-stimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) results in the formation of two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(1,3,4)P3, is formed in stimulated tissues; the metabolic kinetics of Ins(1,3,4)P3 are entirely different from those of Ins(1,4,5)P3 (refs 6, 7). The probable route of formation of Ins(1,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(1,3,4)P3 by a 5-phosphatase in red blood cell membranes. However, the source of Ins(1,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(1,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation of Ins(1,4,5)P3. The function of this novel pathway is unknown.  相似文献   

4.
Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes   总被引:3,自引:0,他引:3  
Y Oron  N Dascal  E Nadler  M Lupu 《Nature》1985,313(5998):141-143
The enhanced metabolism of phosphoinositides, which is associated with a wide variety of stimuli and physiological responses, has been studied intensively. Berridge and his collaborators demonstrated that the first measurable reaction following cell membrane receptor activation is a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and that the product of this reaction, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), could cause a release of non-mitochondrial calcium. These findings have been verified in other systems. Although the relationship between the hydrolysis of PtdIns(4,5)P2 and the mobilization of intracellular calcium was clearly demonstrated, the direct link between Ins(1,4,5)P3 production and the physiological response was only implied. We have investigated the possibility that the intracellular release of Ins(1,4,5)P3 mediates the muscarinic-cholinergic response is Xenopus oocytes, and we show here that intracellularly injected Ins(1,4,5)P3 mimics the muscarinic depolarizing chloride current in Xenopus oocytes. This is the first demonstration of a direct link between phosphoinositides metabolism and a neuro-transmitter-induced physiological response.  相似文献   

5.
A Sp?t  P G Bradford  J S McKinney  R P Rubin  J W Putney 《Nature》1986,319(6053):514-516
Several receptors for neurotransmitters, hormones and growth factors cause accelerated phosphodiesteratic breakdown of polyphosphoinositides when activated. One of the soluble products of this reaction, inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) is thought to act as a second messenger signalling the release of Ca2+ from intracellular stores. In support of this hypothesis, several studies have shown that Ins(1,4,5)P3 releases sequestered Ca2+ from permeable cells and microsomes. On the basis of certain structural requirements for Ca2+-releasing activity by inositol phosphates, it has been postulated that Ins(1,4,5)P3 acts by binding to a specific intracellular receptor, probably on a component of the endoplasmic reticulum. Here we report that 32P-Ins(1,4,5)P3 binds to a specific saturable site in permeabilized guinea pig hepatocytes and rabbit neutrophils, and that the properties of this binding site suggest that it is the physiological receptor for Ins(1,4,5)P3.  相似文献   

6.
H Higashida  D A Brown 《Nature》1986,323(6086):333-335
Hydrolysis of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) produces two prospective intracellular messengers: inositol 1,4,5-trisphosphate (InsP3), which releases Ca2+ from intracellular stores; and diacylglycerol (DG), which activates protein kinase C. Here we show how the formation of these two substances triggered by one external messenger, bradykinin, leads to the appearance of two different sequential membrane conductance changes in the neurone-like NG108-15 neuroblastoma-glioma hybrid cell line. In these cells bradykinin rapidly hydrolyses PtdIns(4,5)P2 to InsP3 and DG, raises intracellular Ca2+ and hyperpolarizes then depolarizes the cell membrane. By voltage-clamp recording we show that the hyperpolarization results from the activation pharmacologically-identifiable species of Ca2+-dependent K+ current. This is also activated by intracellular injections of Ca2+ or InsP3 so may be attributed to the formation and action of InsP3. The subsequent depolarization results primarily from the inhibition of a different, voltage-dependent K+ current, the M-current that is also inhibited by DG activators. Hence we describe for the first time a dual, time-dependent role for these two intracellular messengers in the control of neuronal signalling by a peptide.  相似文献   

7.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), a second messenger molecule involved in actions of neurotransmitters, hormones and growth factors, releases calcium from vesicular non-mitochondrial intracellular stores. An Ins(1,4,5)P3 binding protein, purified from brain membranes, has been shown to be phosphorylated by cyclic-AMP-dependent protein kinase and localized by immunohistochemical techniques to intracellular particles associated with the endoplasmic reticulum. Although the specificity of the Ins(1,4,5)P3 binding protein for inositol phosphates and the high affinity of the protein for Ins(1,4,5)P3 indicate that it is a physiological Ins(1,4,5)P3 receptor mediating calcium release, direct evidence for this has been difficult to obtain. Also, it is unclear whether a single protein mediates both the recognition of Ins(1,4,5)P3 and calcium transport or whether these two functions involve two or more distinct proteins. In the present study we report reconstitution of the purified Ins(1,4,5)P3 binding protein into lipid vesicles. We show that Ins(1,4,5)P3 and other inositol phosphates stimulate calcium flux in the reconstituted vesicles with potencies and specificities that match the calcium releasing actions of Ins(1,4,5)P3. These results indicate that the purified Ins(1,4,5)P3 binding protein is a physiological receptor responsible for calcium release.  相似文献   

8.
The increase in cytosolic [Ca2+] induced by Ca-mobilizing hormones in liver is mainly due to release of Ca from intracellular stores. For Ca to be released from internal sites a messenger must be formed at the plasma membrane which diffuses into the cytosol to signal Ca release from the intracellular organelles. One of the first actions of these hormones is to cause breakdown of the polyphosphoinositides to form soluble inositol phosphates. Some evidence for the idea that these substances could be the second messenger has been obtained in pancreatic acinar cells. Here we have found that hormone activation of hepatocytes causes rapid breakdown of phosphatidylinositol 4,5-bisphosphate [ PtdIns (4,5)P2] to form inositol trisphosphate ( InsP3 ). When applied to permeabilized hepatocytes, InsP3 releases Ca from non-mitochondrial ATP-dependent pools. This suggests that InsP3 could be the messenger linking Ca-mobilizing receptor activation to intracellular Ca release in liver.  相似文献   

9.
Many cellular functions are regulated by activation of cell-surface receptors that mobilize calcium from internal stores sensitive to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The nature of these internal calcium stores and their localization in cells is not clear and has been a subject of debate. It was originally suggested that the Ins(1,4,5)P3-sensitive store is the endoplasmic reticulum, but a new organelle, the calciosome, identified by its possession of the calcium-binding protein, calsequestrin, and a Ca2+-ATPase-like protein of relative molecular mass 100,000 (100K), has been described as a potential Ins(1,4,5)P3-sensitive calcium store. Direct evidence on whether the calciosome is the Ins(1,4,5)P3-sensitive store is lacking. Using monoclonal antibodies raised against the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum, we show that bovine adrenal chromaffin cells contain two Ca2+-ATPase-like proteins with distinct subcellular distributions. A 100K Ca2+-ATPase-like protein is diffusely distributed, whereas a 140K Ca2+-ATPase-like protein is restricted to a region in close proximity to the nucleus. In addition, Ins(1,4,5)P3-generating agonists result in a highly localized rise in cytosolic calcium concentration ([Ca2+]i) initiated in a region close to the nucleus, whereas caffeine results in a rise in [Ca2+]i throughout the cytoplasm. Our results indicate that chromaffin cells possess two calcium stores with distinct Ca2+-ATPases and that the organelle with the 100K Ca2+-ATPase is not the Ins(1,4,5)P3-sensitive store.  相似文献   

10.
A H Drummond 《Nature》1985,315(6022):752-755
It is now established that a key step in the action of calcium-mobilizing agonists is stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to 1,2-diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). The latter substance acts as a second messenger, controlling the release of calcium from intracellular stores (see ref. 3 for review). The bifurcating nature of the signalling system is exemplified by the fact that the other product of PtdIns(4,5)P2 hydrolysis, 1,2-diacylglycerol, can alter cellular function by activating protein kinase C, the cellular target for several tumour-promoting agents such as the phorbol esters. In various tissues, including GH3 pituitary tumour cells, a synergistic interaction between calcium ions and protein kinase C underlies agonist-induced changes in cell activity. The data presented here suggest that when GH3 cells are stimulated by thyrotropin-releasing hormone (TRH), an agonist inducing PtdIns(4,5)P2 hydrolysis, the two limbs of the inositol lipid signalling system interact to control free cytosolic calcium levels [( Ca2+]i). At low levels of TRH receptor occupancy, [Ca2+]i increases rapidly, then declines relatively slowly. As receptor occupancy increases, the calcium signal becomes more short-lived due to the appearance of a second, inhibitory, component. This latter component, which is enhanced when [Ca2+]i is elevated by high potassium depolarization, is mimicked by active phorbol esters and by bacterial phospholipase C. It seems likely that protein kinase C subserves a negative feedback role in agonist-induced calcium mobilization.  相似文献   

11.
An inositol tetrakisphosphate-containing phospholipid in activated neutrophils   总被引:15,自引:0,他引:15  
Inositol (1,4,5)triphosphate (InsP3) and tetrakisphosphate (InsP4) have been observed in a variety of cell types and have been proposed to play roles in the receptor-mediated rise in intracellular Ca2+ (refs 2, 3). Recently, they have been shown to act synergistically in the activation of a Ca2+-dependent K+ channel in lacrimal acinar cells. InsP3 is the product of phospholipase C (PLC) action on phosphatidylinositol 4,5-bisphosphate (PtdInsP2) whereas InsP4 is believed to arise from phosphorylation of InsP3 by a cytosolic kinase. Although sought as a source for InsP4, PtdInsP3 has not been identified in any specific cell type. There were early reports of InsP4-containing phospholipids in crude extract from bovine brain, but this finding was later withdrawn. Recently, however, a membrane-bound enzyme (Type 1 PI kinase) which adds phosphate onto the 3 position of inositol phospholipids has been identified and the phosphatidylinositol-3-phosphate (PtdIns(3)P) product characterized. This suggests that several forms of phosphoinositides may exist and could be precursors for some of the variety of soluble inositol phosphate products which have been reported in recent years. Here we report the appearance of another novel phosphoinositide containing four phosphates, phosphatidylinositol trisphosphate (PtdInsP3) which we find only in activated but not in unstimulated neutrophils from human donors.  相似文献   

12.
G A Mignery  T C Südhof  K Takei  P De Camilli 《Nature》1989,342(6246):192-195
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) serves as an intracellular second messenger for several neurotransmitters, hormones and growth factors by initiating calcium release from intracellular stores. A cerebellar Ins(1,4,5)P3 receptor has been characterized biochemically and shown by immunocytochemistry to be present in intracellular membranes in Purkinje cells. We show that a previously described Purkinje-cell messenger RNA encodes a protein of relative molecular mass 260,000 (260 K) with the same properties as the cerebellar Ins(1,4,5)P3 receptor. Its sequence is partially homologous to the skeletal muscle ryanodine receptor. By immunocytochemistry and electron microscopy the protein is shown to be present in all parts of the endoplasmic reticulum, including those that extend into axon terminals and dendritic spines. Our results indicate that gated calcium release from intracellular stores in muscle and Purkinje cells uses similar calcium-channel proteins localized in analogous intracellular compartments. This implies that the intracellular calcium stores in the endoplasmic reticulum of neurons extend into presynaptic terminals and dendritic spines where they may play a direct role in regulating the efficacy of neurotransmission.  相似文献   

13.
Several hormones and neurotransmitters raise the cytosolic free Ca2+ concentration by stimulating the influx of Ca2+ and/or by mobilizing stored Ca2+. However, the link between the agonist receptor on the cell surface and the organelle(s) from which Ca2+ is mobilized is unknown. One feature of the agonists that increase cytosolic Ca2+ is their rapid induction of phosphatidylinositol turnover and polyphosphoinositide hydrolysis; in some tissues this leads, within seconds, to a marked accumulation of the water-soluble products, inositol 1,4-bisphosphate ( Ins1 , 4P2 ) and inositol-1,4,5- trisphosphate ( Ins1 ,4, 5P3 ), suggesting that these might mediate Ca2+ mobilization from internal pools. Such an action of Ins1 ,4, 5P3 has recently been inferred from studies with permeabilized pancreatic acinar cells and hepatocytes. Here we show directly that Ins1 ,4, 5P3 rapidly releases Ca2+ from a microsomal fraction of rat insulinoma but not from mitochondria or secretory granules. Moreover, this response is transient and desensitizes the microsomes to subsequent Ins1 ,4, 5P3 additions. These results suggest that Ins1 ,4, 5P3 functions as a cellular messenger inducing early mobilization of Ca2+ from the endoplasmic reticulum.  相似文献   

14.
P F Worley  J M Baraban  J S Colvin  S H Snyder 《Nature》1987,325(7000):159-161
Many neurotransmitters, hormones and growth factors act at membrane receptors to stimulate the phosphodiesteratic hydrolysis of phosphatidyl-inositol 4,5-bisphosphate generating the comessengers inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and diacylglycerol. Diacylglycerol stimulates protein kinase C3 while Ins(1,4,5)P3 is postulated to activate specific receptors leading to release of intracellular calcium, probably from the endoplasmic reticulum. In recent preliminary reports, Rubin and associates detected 32P-Ins(1,4,5)P3 binding to liver and adrenal microsomes and to permeabilized neutrophils and liver cells. We now report the biochemical and autoradiographic demonstration in brain of high affinity, selective binding sites for 3H- and 32P-labelled Ins(1,4,5)P3 at levels 100-300 times higher than those observed in peripheral tissues. The potencies of various myoinositol analogues at the Ins(1,4,5)P3 binding site correspond to their potencies in releasing calcium from microsomes, supporting the physiological relevance of this receptor. Brain autoradiograms demonstrate discrete, heterogeneous localization of Ins(1,4,5)P3 receptors. In some regions localizations of Ins(1,4,5)P3 receptors resemble those of protein kinase C14, while in others they differ markedly, suggesting a novel mechanism whereby the relative activity of the two limbs of the PI cycle can be differently regulated.  相似文献   

15.
P T Hawkins  T R Jackson  L R Stephens 《Nature》1992,358(6382):157-159
Although the hormone-stimulated synthesis of 3-phosphorylated inositol lipids is known to form an intracellular signalling system, there is no consensus on the crucial receptor-regulated event in this pathway and it is still not clear which of the intermediates represent potential output signals. We show here that the key step in the synthesis of 3-phosphorylated inositol lipids in 3T3 cells stimulated by platelet-derived growth factor is the activation of a phosphatidylinositol(4,5)-bisphosphate (3)-hydroxy (PtdIns(4,5)P2 3-OH) kinase. A similar conclusion has been applied to explain the actions of formyl-Met-Leu-Phe on neutrophils, and it may be that receptors that couple through intrinsic tyrosine kinases or through G proteins stimulate the same step in 3-phosphorylated inositol lipid metabolism. The close parallel between these two mechanisms for the activation of PtdIns(4,5)P2 3-OH kinase and those described for the activation of another key signalling enzyme, phospholipase C (ref. 7), focuses attention on the product of the PtdIns(4,5)P2 3-OH kinase, PtdIns(3,4,5)P3, as a possible new second messenger.  相似文献   

16.
L Varticovski  B Druker  D Morrison  L Cantley  T Roberts 《Nature》1989,342(6250):699-702
Colony stimulating factor-1 (CSF-1) is a lineage-specific growth factor required for proliferation and survival of mononuclear phagocytes and their precursors. The CSF-1 receptor belongs to a family of ligand-activated protein-tyrosine kinases. Activation of the platelet-derived growth factor receptor, but not the CSF-1 receptor, leads to an increase in phospholipase C activity and a subsequent elevation in intracellular calcium. Recent studies have shown that a novel phosphoinositol (PtdIns) kinase, termed PtdIns-3 kinase, is stimulated by the platelet-derived growth factor receptor and certain oncogenes in the protein-tyrosine kinase family. PtdIns-3 kinase phosphorylates the D-3 hydroxyl position of the inositol ring of PtdIns, and its products do not participate in the generation of the second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Here we report that addition of CSF-1 is followed by activation of PtdIns-3 kinase in a macrophage cell line (P388 D1), which contains CSF-1 receptors, and in BALB/c fibroblasts made to express the human CSF-1 receptor. Furthermore, we show that activation of the CSF-1 receptor results in the accumulation in intact cells of polyphosphoinositides phosphorylated at the D-3 position of the inositol ring. Thus activation of the CSF-1 receptor stimulates PtdIns-3 kinase activity, indicating a novel pathway for CSF-1 receptor-mediated signal transduction.  相似文献   

17.
L R Stephens  R F Irvine 《Nature》1990,346(6284):580-583
Although myo-inositol hexakisphosphate (InsP6; phytate) is the most abundant inositol phosphate in nature and probably has a wide variety of functions, neither the route of its synthesis from myo-inositol nor its metabolic relationships with other inositol-containing compounds (such as the second messenger inositol 1,4,5-trisphosphate, Ins(1,4,5)P3) are known. Here we report that the pathway by which InsP6 is synthesized in the cellular slime mould Dictyostelium, and in cell-free preparations derived from them, is catalysed by a series of soluble ATP-dependent kinases independently of the metabolism of both phosphatidylinositol and Ins(1,4,5)P3. The intermediates between myo-inositol and InsP6 are Ins3P, Ins(3,6)P2, Ins(3,4,6)P3, Ins(1,3,4,6)P4 and Ins(1,3,4,5,6)P5. The 3- and 5-phosphates of InsP6 take part in futile cycles in which Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,6)P5 are rapidly formed by dephosphorylation of InsP6, only to be rephosphorylated to yield their precursor.  相似文献   

18.
In many cell types, receptor activation of phosphoinositidase C results in an initial release of intracellular Ca2+ stores followed by sustained Ca2+ entry across the plasma membrane. Inositol 1,4,5-trisphosphate is the mediator of the initial Ca2+ release, although its role in the mechanism underlying Ca2+ entry remains controversial. We have now used two techniques to introduce inositol phosphates into mouse lacrimal acinar cells and measure their effects on Ca2+ entry: microinjection into cells loaded with Fura-2, a fluorescent dye which allows the measurement of intracellular free calcium concentration by microspectrofluorimetry, and perfusion of patch clamp pipettes in the whole-cell configuration while monitoring the activity of Ca(2+)-activated K+ channels as an indicator of intracellular Ca2+. We report here that inositol 1,4,5-trisphosphate serves as a signal that is both necessary and sufficient for receptor activation of Ca2+ entry across the plasma membrane in these cells.  相似文献   

19.
M Hirata  T Sasaguri  T Hamachi  T Hashimoto  M Kukita  T Koga 《Nature》1985,317(6039):723-725
D-myo-inositol-1,4,5-trisphosphate (InsP3) is a putative intracellular second messenger for the mobilization of Ca2+ from intracellular stores, in particular, the endoplasmic reticulum. Specific binding sites on the endoplasmic reticulum may participate in the InsP3-induced release of Ca2+ from the Ca2+ pool. To examine the specific binding sites on the endoplasmic reticulum, we synthesized an arylazide derivative of InsP3 for photoaffinity labelling; InsP3 coupled to p-azidobenzoic acid (InsP3-pAB) using N,N'-carbonyldiimidazole (CDI) was obtained at a 9-11% yield. Here, we report that InsP3-pAB, but not an arylazide derivative of inositol-1,4-bisphophate (Ins(1,4)P2), causes the irreversible inhibition of InsP3-induced release of Ca2+ in saponin-permeabilized photo-irradiated macrophages. The irreversible inhibition by InsP3-pAB after photo-irradiation was prevented by a 10-fold excess of unmodified InsP3.  相似文献   

20.
L Missiaen  C W Taylor  M J Berridge 《Nature》1991,352(6332):241-244
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号