首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
分析了射孔出砂形态及出砂段套管所受轴向压力;考虑不同出砂程度,建立了射孔出砂段套管三维有限元力学模型;分析了出砂分布及出砂程度对射孔段套管应力强度安全性的影响;分析了不同生产压差及改造压力作用下射孔套管等效应力的变化趋势。结果表明,射孔出砂掏空空洞的构形曲线为一个与上覆岩层压力、套管外径有关的二次曲线;空洞构形的曲率半径越大,套管所受轴向压力越大;即使轻微出砂,只要形成空洞,射孔段套管的强度会大大降低;集中出砂时套管的应力比分散出砂时的高;出砂量越大,最大等效应力越大,套管的强度安全性越低。  相似文献   

2.
射孔套管剩余抗挤能力分析   总被引:1,自引:0,他引:1  
套管射孔后其抗挤能力将有所降低。建立了射孔段套管弹性抗挤性能分析控制的一般方程 ,并利用摄动理论给出了射孔套管弹性抗挤能力系数的一般计算公式。利用弹塑性有限元方法确定了孔口附近塑性区随射孔套管的外压增加的变化规律 ,并给出了确定射孔套管抗挤能力的计算方法。研究结果表明 ,孔眼附近的应力集中所引起的塑性区的存在 ,明显影响了射孔套管的抗挤强度。与弹性分析结果比较 ,弹塑性分析结果更接近实验值。孔眼的形状对射孔套管抗挤能力有直接影响。长轴在环向的椭圆形孔眼的套管抗挤能力降低得最少 ,方形孔眼的降低得最多。在孔眼形状相同的情况下 ,孔眼面积增大 ,射孔套管的抗挤能力降低。当射孔密度小于 2 0孔 /m时 ,无论采用何种布孔方式 ,除方形孔眼外 ,套管抗挤能力的降低均不会超过 4 % ;大于 2 0孔 /m时 ,射孔参数对套管抗挤能力的影响明显增加  相似文献   

3.
射孔套管剩余抗挤能力分析   总被引:5,自引:1,他引:4  
套管射孔后其抗挤能力将有所降低。建立了射孔段套管弹性抗挤性能分析控制的一般方程,并利用摄动理论给出了射孔套管弹性抗挤能力系数的一般计算公式。利用弹塑性有限元方法确定了孔口附近塑性区随射孔套管的外压增加的变化规律,并给出了确定射孔套管抗挤能力的计算方法。研究结果表明,孔眼附近的应力集中所引起的塑性区的存在,明显影响了射孔套管的抗挤强度。与弹性分析结果比较,弹塑性分析结果更接近实验值。孔眼的形状对射孔套管抗挤能力有直接影响。长轴在环向的椭圆形孔眼的套管抗挤能力降低得最少,方形孔眼的降低得最多。在孔眼形状相同的情况下,孔眼面积增大,射孔套管的抗挤能力降低。当射孔密度小于20孔/m时,无论采用何种布孔方式,除方形孔眼外,套管抗挤能力的降低均不会超过4%;大于20孔/m时,射孔参数对套管抗挤能力的影响明显增加。  相似文献   

4.
肖遥  邓金根  刘伟  许杰  陈毅 《科学技术与工程》2020,20(13):5094-5100
热力采油使得套管承受较高水平的热应力,增加套管损坏风险,从而降低套管使用寿命。针对射孔参数对热采井射孔套管抗热应力能力的影响规律研究较少。利用有限元软件建立三维套管模型,结合基于应变的设计方法评价热采井射孔套管的抗热应力能力。结果表明,在安全内外压作用下,射孔排包含射孔数目较多且射孔直径较小的射孔参数可增强射孔套管的抗热应力能力;多轮次蒸汽吞吐过程对套管受热变形具有累加效应,保证强度安全前提下选择使得射孔排包含射孔数目较多的射孔参数组合可使得套管满足热应力安全性。研究结果从射孔参数对套管抗热应力能力的影响角度出发,为热采井实际射孔参数方案优选提供了参考。  相似文献   

5.
充分考虑拉压强度比和中间主应力系数,根据俞茂宏统一强度理论推导出在外压强下闭端、开端和平面应变套管弹塑性极限外压强的统一算法。数值仿真显示:随拉压强度比的减小和中间主应力系数的增大,弹性极限外压强增大;开端套管的弹性极限外压强最大,平面应变套管的次之,闭端套管的最小;塑性区的半径随外压强的增大而增大;当外压强增大时,套管由弹性状态进入弹塑性状态,塑性区的半径逐渐从内半径扩展到外半径;塑性极限外压强随拉压强度比的减小而增大;随外内半径比的增大,在同样的统一强度理论参数下,闭端、开端和平面应变的塑性极限外压强之间的差异增大,且塑性极限外压强大于弹性极限外压强;塑性极限外压强的计算值与试验测试值之间的相对误差为-4%~-9%,而国际标准化组织样板数据与试验测试值之间的相对误差为-12%~-25%,美国石油协会推荐数据与试验测试值之间的相对误差为-17%~-30%,表明文中的套管塑性极限外压强公式更接近试验值。  相似文献   

6.
深部盐膏岩地层套管磨损后等效应力分析   总被引:1,自引:0,他引:1  
针对盐膏层蠕变和套管磨损联合作用下套管变形破坏的关键技术难题,结合室内盐岩蠕变试验,确定盐膏岩的蠕变参数,考虑盐膏层蠕变的影响,研究深部盐膏层非均匀地应力条件下蠕变、磨损程度、磨损位置对套管等效应力的影响.结果表明:蠕变在一定程度上降低了磨损套管抵抗外部载荷的能力,套管等效应力的非均匀性增强;随着蠕变时间的增加,套管等效应力逐渐增加,在1 a左右达到平衡;套管磨损越深,套管的等效应力越大且非均匀性越强;磨损位置明显改变了套管等效应力的分布规律,沿最小地应力方位磨损时,套管等效应力最大,最容易屈服;磨损位置不同时,只有当磨损程度较小时套管最大等效应力才出现在水平最小地应力方位;沿0°方向磨损时,只有当磨损程度较小时才会有“套管最大等效应力随磨损程度变化不大”的结论.  相似文献   

7.
储层压力下降引起的地层压实会导致上部盐层变形,再加上地层倾斜的影响,进一步加剧了盐层套管的损坏。针对这一技术难题,采用FLAC3D有限差分软件建立了上部盐岩、下部储层的套管-水泥环-倾斜地层三维模型,研究了不同倾角地层储层压力下降对储层及上部盐层套管等效应力的影响。得出以下结论:由于分界面处岩性变化,导致界面附近套管等效应力变化剧烈;分界面以上(含盐层)套管等效应力大于分界面以下(含储层)套管等效应力;储层压力下降幅度一定,套管等效应力随地层倾角的增加而增加;地层倾角一定,随着储层压力下降幅度增加,当下降幅度低于20%时,套管等效应力增加缓慢;下降幅度超过20%,套管等效应力增加剧烈。将该方法应用于中国西部某油田db204井盐下储层压力衰竭分析,完善了盐层套管设计理论,为盐层井筒完整性提供了有力的保障。  相似文献   

8.
王战辉  马向荣  高勇  李瑞瑞 《河南科学》2019,37(7):1165-1170
以X60管线钢双点腐蚀缺陷管道作为研究对象,根据油气管道的本身特点以及腐蚀机理,借助ANSYS有限元分析软件,考察双点蚀缺陷管道应力云图分布规律,通过改变双点蚀缺陷半径、深度和腐蚀间距,考察其对剩余强度和等效应力的影响规律.结果表明,最大等效应力出现在双点腐蚀缺陷周围区域;随着内压的增大,在未达到屈服极限时,等效应力与内压呈线性关系,当等效应力达到屈服极限时,随着内压的增加,等效应力维持不变,当等效应力超过屈服极限时,随着内压的增大,等效应力增加;随着双点蚀缺陷半径的增大,剩余强度呈增加的趋势,安全性提高;随着双点蚀缺陷深度的增加,剩余强度呈减小的趋势,安全性降低.所得结论对油气管道腐蚀与防护有一定的指导意义和参考价值.  相似文献   

9.
幸雪松  邱浩  文敏  侯泽宁  黄辉  毕刚 《科学技术与工程》2022,22(25):10952-10957
射孔完井对油井产能的主要影响因素为孔眼密度、孔眼直径、孔眼深度和孔眼相位,基于油井产能最优对射孔参数进行优化设计是提高射孔井产能的关键技术之一。本文基于射孔井产能的半解析模型,应用有限元分析法对射孔井的产能进行数值模拟研究,并应用正交实验法对数值模拟结果进行分析。结果表明:随着孔深的增加,产率比增加,且在孔深较小时斜率较大,当穿孔深度超过钻井污染带深度时,曲线出现拐点,斜率变小、变平。随着孔径的增大,产率比增大,在实际射孔过程中,考虑到套管强度的问题,孔径应在保证套管强度的情况下尽可能取最大值。当孔密增大时,产率比随之增大,且随孔密的增大,其产率比上升趋势减弱。相位角增大时,产率比减小,相位角从60°变到90°时,产能有较大的提高,相位角在90°和180°之间变化时产能变化不大。通过比较极差值R来判断各个因素的主次关系。本文可为射孔参数的优选提供指导。  相似文献   

10.
我国非常规油气资源丰富,是重要的接替资源之一,但由于其储层的致密性,主要通过大规模体积压裂获得工业生产油气流,压裂过程中套管发生复杂的应力变化特征,油气井套管变形也越来越严重,目前对于套管内外壁、射孔簇间、段间等特征的认识尚不清晰。为此,基于压裂特点,提出数值模拟方法,利用实际典型套变井的压裂参数进行模拟和验证。结果表明:1、在压裂和返排阶段,射孔孔眼处均产生应力集中,但应力梯度变化不大;返排时在射孔簇间套管段与射孔同轴线方向的外壁形成高度应力集中,存在发生椭圆形变形危险;射孔段到射孔簇间段过渡区间,等效应力存在突变拐点,压裂阶段先突减后骤增,返排阶段先突增后骤减,返排时该段剪切应力集中达到峰值,易发生剪切破坏,形成套管错断。2、压裂阶段水泥环除在射孔孔眼处形成应力集中外,在射孔簇间段的水泥环的环向截面在轴线方位也存在较高的应力分布,造成水泥环一定程度的破坏,返排时水泥环破坏程度被加强,套损率较高。3、在相同压裂排量条件下,适当提高射孔簇长度、缩短射孔簇间距离、缩短压裂段间距能够有效提高套管的安全性,三塘湖M56区建议5 1/2 in P110套管射孔簇长度为1.5-3.0 m,射孔簇间距小于10 m,段间距小于30 m。  相似文献   

11.
为解决油层套管射孔开裂问题,除应对射孔弹、射孔工艺以及油层套管的材质进行研究外,还应建立油层套管射孔开裂的安全韧性判据.本文分析了油层套管射孔开裂时的受力状况,运用金属动态形变原理,结合薄壁管失稳断裂的力学理论,从理论上充分论证了AKV/σY作为套管射孔开裂安全韧性判据的可行性;同时,在实验室试验及油层套管实弹模拟射孔试验的基础上,建立了油层套管射孔开裂倾向与管材力学性能间的相关性判据,即对于不同钢级的油层套管,避免射孔开裂现象的安全韧性判据为AKV/σY≥5.3×10-2J/MPa.还对不同钢级套管韧性、冲击试样尺寸,试样各向异性及试验温度等与该判据相关的一些问题进行了讨论.  相似文献   

12.
在设计可承受围压的磨料射流喷射实验装置基础上,选取低孔低渗的石灰岩及套管试件,改变喷射压力、围压、喷嘴直径、喷射距离等因素,分析磨料射流切割套管及岩心的特性。结果表明,喷射压力、喷嘴直径等是影响磨料射流喷射效果的主要控制因素,喷射压力及喷嘴直径越大,喷射效果越好,射孔深度越深;射穿套管的时间对喷距及围压较为敏感,但岩样中的射孔深度对二者变化时的响应较小。  相似文献   

13.
螺旋射孔条件下地层破裂压力的数值模拟研究   总被引:4,自引:0,他引:4  
水力压裂技术已经在低渗地层的石油天然气开采中得到广泛的应用,螺旋射孔是该技术中的常用措施,在此条件下地层的破裂压力是影响施工成功率和效果的重要因素之一.采用三维有限元方法对螺旋射孔条件下地层的破裂压力进行了研究,建立了套管完井(考虑水泥环及套管的存在)情况下井筒及地层的三维计算模型,首先计算和分析了定向射孔时不同的射孔密度和射孔方向角对地层的破裂压力的影响,与前人的实验结论进行了比较,在此基础上,进行了螺旋射孔条件下不同射孔方位角、相位角以及射孔密度对地层破裂压力的影响的研究,通过数值模拟的结果,给出了螺旋射孔对地层破裂压力的影响规律,可作为进一步研究螺旋射孔条件下的裂缝扩展规律的基础,同时对压裂设计和实际压裂施工中螺旋射孔参数的选取给出了具体的建议.  相似文献   

14.
旋转磨料射流井下套管开窗施工中,开窗直径与开窗深度是最为关键的两个参数。在实际施工过程中,难以对井下套管的开窗过程进行实时监测,因此,需要进一步研究其预测技术,以保证能够开出需要的窗口。由于影响开窗直径与开窗深度的因素很多,很难用传统的数学建模方法进行预测。对此,提出了一种利用BP神经网络预测旋转磨料射流开窗直径与开窗深度的新方法,并用遗传算法进行优化,以得到最优的隐层学习率和输出层学习率,从而提高BP神经网络预测磨料射流井下套管开窗直径及开窗深度的准确性。利用部分实验数据对该方法的可靠性进行了验证。通过对比预测值与实验值发现,该方法的预测精度完全满足工程要求,为现场应用提供了理论支撑。  相似文献   

15.
油气井射孔深度校深技术是保证油气井完井精确射孔作业的前提。射孔作业利用油气井储层的自然放射性伽马校深和油套管接箍传统校深方法,随着油气开采时间延长,井下伽马放射性的减弱和油套管接箍的破损,射孔校深测量的这两路信号往往被井下噪声煙没,有效信号特征不明显,直接依靠传统的幅度识别法,会带来较大的射孔精度误差,甚至造成误射孔事故的发生,已无法满足薄储层精确深度射孔的需求。基于信号互相关函数法计算原理,将标准的接箍信号和伽马信号与射孔校深采集的对应信号进行互相关运算,压制背景噪声,突出有效信号,实现射孔精确校深的目的。现场应用表明,该方法校深技术简单,能够满足现场一次作业实现实时校深和射孔完井的目的,具有一定的实际应用价值。  相似文献   

16.
页岩气井压裂后套管变形问题严重,已成为制约页岩气资源高效开发的瓶颈,但目前引发套变现象的原因仍认识不清,且无有效防治措施。根据页岩结构特征及力学性质,结合数值模拟技术对页岩-液体作用对套管变形的影响及其防治措施开展研究。结果表明,由于液相侵入导致的裂缝层间膨胀会造成页岩在液体作用下产生微弱形变,由于页岩力学强度高,且水化后仍具备较高的弹性模量,造成液-岩反应后的膨胀变形会产生较强的作用力,在无应力释放的情况下该作用力施加在套管上导致套管应力增加,对套管变形产生重要影响。水泥环弹性模量的降低以及密集射孔能够对防治套管变形起到积极作用。  相似文献   

17.
油井生产中地层出砂会严重影响射孔套管的力学性能,造成套管损坏。建立射孔套管在出砂层段的三维力学有限元模型,应用Ansys有限元软件分析该出砂层段射孔套管力学性能。研究认为,在出砂地层射孔套管力学性能变化较大,表现为射孔处套管的抗挤强度减小,套管最大应力在射孔处产生。均匀载荷下,套管应力与地层中出砂高度成抛物线关系,生产中应减小或增加出砂量达到远离出砂高度临界值,以减小套管应力。非均匀载荷下,随着出砂量增加,产生的空洞高度增加,套管的应力逐渐减小。因此,在非均匀载荷下,应提高出砂量以增加空洞高度,达到提高套管的抗挤强度,延长套管使用期限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号