首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought.  相似文献   

2.
Most models of melt generation beneath mid-ocean ridges predict significant reduction of melt production at ultraslow spreading rates (full spreading rates &<20 mm x yr(-1)) and consequently they predict thinned oceanic crust. The 1,800-km-long Arctic Gakkel mid-ocean ridge is an ideal location to test such models, as it is by far the slowest portion of the global mid-ocean-ridge spreading system, with a full spreading rate ranging from 6 to 13 mm x yr(-1) (refs 4, 5). Furthermore, in contrast to some other ridge systems, the spreading direction on the Gakkel ridge is not oblique and the rift valley is not offset by major transform faults. Here we present seismic evidence for the presence of exceptionally thin crust along the Gakkel ridge rift valley with crustal thicknesses varying between 1.9 and 3.3 km (compared to the more usual value of 7 km found on medium- to fast-spreading mid-ocean ridges). Almost 8,300 km of closely spaced aeromagnetic profiles across the rift valley show the presence of discrete volcanic centres along the ridge, which we interpret as evidence for strongly focused, three-dimensional magma supply. The traces of these eruptive centres can be followed to crustal ages of approximately 25 Myr off-axis, implying that these magma production and transport systems have been stable over this timescale.  相似文献   

3.
Jean-Baptiste P  Fourré E 《Nature》2004,428(6978):36
In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.  相似文献   

4.
Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.  相似文献   

5.
An ultraslow-spreading class of ocean ridge   总被引:15,自引:0,他引:15  
Dick HJ  Lin J  Schouten H 《Nature》2003,426(6965):405-412
New investigations of the Southwest Indian and Arctic ridges reveal an ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults. We find that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions. The differences between ultraslow- and slow-spreading ridges are as great as those between slow- and fast-spreading ridges. The ultraslow-spreading ridges usually form at full spreading rates less than about 12 mm yr(-1), though their characteristics are commonly found at rates up to approximately 20 mm yr(-1). The ultraslow-spreading ridges consist of linked magmatic and amagmatic accretionary ridge segments. The amagmatic segments are a previously unrecognized class of accretionary plate boundary structure and can assume any orientation, with angles relative to the spreading direction ranging from orthogonal to acute. These amagmatic segments sometimes coexist with magmatic ridge segments for millions of years to form stable plate boundaries, or may displace or be displaced by transforms and magmatic ridge segments as spreading rate, mantle thermal structure and ridge geometry change.  相似文献   

6.
Johnson HP  Hutnak M  Dziak RP  Fox CG  Urcuyo I  Cowen JP  Nabelek J  Fisher C 《Nature》2000,407(6801):174-177
Hydrothermal vents on mid-ocean ridges of the northeast Pacific Ocean are known to respond to seismic disturbances, with observed changes in vent temperature. But these disturbances resulted from submarine volcanic activity; until now, there have been no observations of the response of a vent system to non-magmatic, tectonic events. Here we report measurements of hydrothermal vent temperature from several vents on the Juan de Fuca ridge in June 1999, before, during and after an earthquake swarm of apparent tectonic origin. Vent fluid temperatures began to rise 4-11 days after the first earthquake. Following this initial increase, the vent temperatures oscillated for about a month before settling down to higher values. We also observed a tenfold increase in fluid output from the hydrothermal system over a period of at least 80 days, extending along the entire ridge segment. Such a large, segment-wide thermal response to relatively modest tectonic activity is surprising, and raises questions about the sources of excess heat and fluid, and the possible effect on vent biological communities.  相似文献   

7.
Understanding how larvae from extant hydrothermal vent fields colonize neighbouring regions of the mid-ocean ridge system remains a major challenge in oceanic research. Among the factors considered important in the recruitment of deep-sea larvae are metabolic lifespan, the connectivity of the seafloor topography, and the characteristics of the currents. Here we use current velocity measurements from Endeavour ridge to examine the role of topographically constrained circulation on larval transport along-ridge. We show that the dominant tidal and wind-generated currents in the region are strongly attenuated within the rift valley that splits the ridge crest, and that hydrothermal plumes rising from vent fields in the valley drive a steady near-bottom inflow within the valley. Extrapolation of these findings suggests that the suppression of oscillatory currents within rift valleys of mid-ocean ridges shields larvae from cross-axis dispersal into the inhospitable deep ocean. This effect, augmented by plume-driven circulation within rift valleys having active hydrothermal venting, helps retain larvae near their source. Larvae are then exported preferentially down-ridge during regional flow events that intermittently over-ride the currents within the valley.  相似文献   

8.
Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean   总被引:1,自引:0,他引:1  
Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system.  相似文献   

9.
During January–May in 2007,the Chinese research cruise DY115-19 discovered an active hydrothermal field at 49°39′E/37°47′S on the ultraslow spreading Southwest Indian Ridge (SWIR).This was also the first active hydrothermal field found along an ultraslow-spreading ridge.We analyzed mineralogical,textural and geochemical compositions of the sulfide chimneys obtained from the 49°39′E field.Chimney samples show a concentric mineral zone around the fluid channel.The mineral assemblages of the interiors consist ...  相似文献   

10.
Hydrothermal circulation at the axis of mid-ocean ridges affects the chemistry of the lithosphere and overlying ocean, supports chemosynthetic biological communities and is responsible for significant heat transfer from the lithosphere to the ocean. It is commonly thought that flow in these systems is oriented across the ridge axis, with recharge occurring along off-axis faults, but the structure and scale of hydrothermal systems are usually inferred from thermal and geochemical models constrained by the geophysical setting, rather than direct observations. The presence of microearthquakes may shed light on hydrothermal pathways by revealing zones of thermal cracking where cold sea water extracts heat from hot crustal rocks, as well as regions where magmatic and tectonic stresses create fractures that increase porosity and permeability. Here we show that hypocentres beneath a well-studied hydrothermal vent field on the East Pacific Rise cluster in a vertical pipe-like zone near a small axial discontinuity, and in a band that lies directly above the axial magma chamber. The location of the shallow pipe-like cluster relative to the distribution and temperature of hydrothermal vents along this section of the ridge suggests that hydrothermal recharge may be concentrated there as a consequence of the permeability generated by tectonic fracturing. Furthermore, we interpret the band of seismicity above the magma chamber as a zone of hydrothermal cracking, which suggests that hydrothermal circulation may be strongly aligned along the ridge axis. We conclude that models that suggest that hydrothermal cells are oriented across-axis, with diffuse off-axis recharge zones, may not apply to the fast-spreading East Pacific Rise.  相似文献   

11.
Dunn RA  Martinez F 《Nature》2011,469(7329):198-202
The opening of back-arc basins behind subduction zones progresses from initial rifting near the volcanic arc to seafloor spreading. During this process, the spreading ridge and the volcanic arc separate and lavas erupted at the ridge are predicted to evolve away from being heavily subduction influenced (with high volatile contents derived from the subducting plate). Current models predict gradational, rather than abrupt, changes in the crust formed along the ridge as the inferred broad melting region beneath it migrates away from heavily subduction-influenced mantle. In contrast, here we show that across-strike and along-strike changes in crustal properties at the Eastern Lau spreading centre are large and abrupt, implying correspondingly large discontinuities in the nature of the mantle supplying melt to the ridge axes. With incremental separation of the ridge axis from the volcanic front of as little as 5?km, seafloor morphology changes from shallower complex volcanic landforms to deeper flat sea floor dominated by linear abyssal hills, upper crustal seismic velocities abruptly increase by over 20%, and gravity anomalies and isostasy indicate crustal thinning of more than 1.9?km. We infer that the abrupt changes in crustal properties reflect rapid evolution of the mantle entrained by the ridge, such that stable, broad triangular upwelling regions, as inferred for mid-ocean ridges, cannot form near the mantle wedge corner. Instead, the observations imply a dynamic process in which the ridge upwelling zone preferentially captures water-rich low-viscosity mantle when it is near the arc. As the ridge moves away from the arc, a tipping point is reached at which that material is rapidly released from the upwelling zone, resulting in rapid changes in the character of the crust formed at the ridge.  相似文献   

12.
Lizarralde D  Gaherty JB  Collins JA  Hirth G  Kim SD 《Nature》2004,432(7018):744-747
A variety of observations indicate that mid-ocean ridges produce less crust at spreading rates below 20 mm yr(-1) (refs 1-3), reflecting changes in fundamental ridge processes with decreasing spreading rate. The nature of these changes, however, remains uncertain, with end-member explanations being decreasing shallow melting or incomplete melt extraction, each due to the influence of a thicker thermal lid. Here we present results of a seismic refraction experiment designed to study mid-ocean ridge processes by imaging residual mantle structure. Our results reveal an abrupt lateral change in bulk mantle seismic properties associated with a change from slow to ultraslow palaeo-spreading rate. Changes in mantle velocity gradient, basement topography and crustal thickness all correlate with this spreading-rate change. These observations can be explained by variations in melt extraction at the ridge, with a gabbroic phase preferentially retained in the mantle at slower spreading rates. The estimated volume of retained melt balances the approximately 1.5-km difference in crustal thickness, suggesting that changes in spreading rate affect melt-extraction processes rather than total melting.  相似文献   

13.
 南海存在两种火山岩:洋中脊玄武岩(MORB)和洋岛玄武岩(OIB)。国际大洋发现计划(IODP)第349、367、368、368X航次在南海海盆的成功钻取,获得了南海初始扩张(~34 Ma)和停止扩张(~15-16 Ma)前的洋壳样品。南海东部、西南次海盆及北缘洋-陆过渡带代表海盆发展的不同阶段,具有不同的地幔潜能温度、物质组成和洋脊扩张速度,因此产生的洋中脊玄武岩成分差异显著。南海地区在扩张晚期及停止扩张之后存在大规模地幔上涌,与其周缘地区的持续俯冲有关,产出的海山OIB不同于地幔柱活动产生的火山链。南海虽小,但蕴含的信息异常丰富,是窥探地球深部难得的天然窗口。  相似文献   

14.
Davis E  Becker K  Dziak R  Cassidy J  Wang K  Lilley M 《Nature》2004,430(6997):335-338
Seafloor hydrothermal systems are known to respond to seismic and magmatic activity along mid-ocean ridges, often resulting in locally positive changes in hydrothermal discharge rate, temperature and microbial activity, and shifts in composition occurring at the time of earthquake swarms and axial crustal dike injections. Corresponding regional effects have also been observed. Here we present observations of a hydrological response to seafloor spreading activity, which resulted in a negative formation-fluid pressure transient during and after an earthquake swarm in the sediment-sealed igneous crust of the Middle Valley rift of the northernmost Juan de Fuca ridge. The observations were made with a borehole seal and hydrologic observatory originally established in 1991 to study the steady-state pressure and temperature conditions in this hydrothermally active area. The magnitude of the co-seismic response is consistent with the elastic strain that would be expected from the associated earthquakes, but the prolonged negative pressure transient after the swarm is surprising and suggests net co-seismic dilatation of the upper, permeable igneous crust. The rift valley was visited four weeks after the onset of the seismic activity, but no signature of increased hydrothermal activity was detected in the water column. It appears that water, not magma, filled the void left by this spreading episode.  相似文献   

15.
Carbotte SM  Small C  Donnelly K 《Nature》2004,429(6993):743-746
The Earth's mid-ocean ridges display systematic changes in depth and shape, which subdivide the ridges into discrete spreading segments bounded by transform faults and smaller non-transform offsets of the axis. These morphological changes have been attributed to spatial variations in the supply of magma from the mantle, although the origin of the variations is poorly understood. Here we show that magmatic segmentation of ridges with fast and intermediate spreading rates is directly related to the migration velocity of the spreading axis over the mantle. For over 9,500 km of mid-ocean ridge examined, leading ridge segments in the 'hotspot' reference frame coincide with the shallow magmatically robust segments across 86 per cent of all transform faults and 73 per cent of all second-order discontinuities. We attribute this relationship to asymmetric mantle upwelling and melt production due to ridge migration, with focusing of melt towards ridge segments across discontinuities. The model is consistent with variations in crustal structure across discontinuities of the East Pacific Rise, and may explain variations in depth of melting and the distribution of enriched lavas.  相似文献   

16.
Lilley MD  Butterfield DA  Lupton JE  Olson EJ 《Nature》2003,422(6934):878-881
The Endeavour segment of the Juan de Fuca ridge is host to one of the most vigorous hydrothermal areas found on the global mid-ocean-ridge system, with five separate vent fields located within 15 km along the top of the ridge segment. Over the past decade, the largest of these vent fields, the 'Main Endeavour Field', has exhibited a constant spatial gradient in temperature and chloride concentration in its vent fluids, apparently driven by differences in the nature and extent of subsurface phase separation. This stable situation was disturbed on 8 June 1999 by an earthquake swarm. Owing to the nature of the seismic signals and the lack of new lava flows observed in the area during subsequent dives of the Alvin and Jason submersibles (August-September 1999), the event was interpreted to be tectonic in nature. Here we show that chemical data from hydrothermal fluid samples collected in September 1999 and June 2000 strongly suggest that the event was instead volcanic in origin. Volatile data from this event and an earlier one at 9 degrees N on the East Pacific Rise show that such magmatic events can have profound and rapid effects on fluid-mineral equilibria, phase separation, 3He/heat ratios and fluxes of volatiles from submarine hydrothermal systems.  相似文献   

17.
利用有限差分数值模拟方法, 恢复洋中脊地形的形成过程, 模型中岩浆供给按一定的时间周期和幅度规律性地变化。结果表明: 只有当岩浆供给变化周期的时间尺度大于在洋中脊同一侧形成两条断层的时间间隔时, 才能影响海底地形的形成过程并被记录。结合数值模拟实验结果和不同类型洋中脊的地形特征, 认为快速扩张洋中脊是唯一可能在地形上记录到米兰科维奇气候周期(偏心率(100 ka)、倾斜度(41 ka)和岁差(23 ka)) 3个时间尺度岩浆变化周期的洋中脊类型, 中速扩张洋中脊和部分岩浆供给充足慢速扩张洋中脊的地形可能与100 ka尺度的岩浆供给变化周期有关, 大部分慢速扩张洋中脊海底地形不受100 ka及以下的岩浆供给变化周期影响。  相似文献   

18.
Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean   总被引:2,自引:0,他引:2  
The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.  相似文献   

19.
A high-resolution mapping and sampling study of the Gakkel ridge was accomplished during an international ice-breaker expedition to the high Arctic and North Pole in summer 2001. For this slowest-spreading endmember of the global mid-ocean-ridge system, predictions were that magmatism should progressively diminish as the spreading rate decreases along the ridge, and that hydrothermal activity should be rare. Instead, it was found that magmatic variations are irregular, and that hydrothermal activity is abundant. A 300-kilometre-long central amagmatic zone, where mantle peridotites are emplaced directly in the ridge axis, lies between abundant, continuous volcanism in the west, and large, widely spaced volcanic centres in the east. These observations demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis. Highly punctuated volcanism in the absence of ridge offsets suggests that first-order ridge segmentation is controlled by mantle processes of melting and melt segregation. The strong focusing of magmatic activity coupled with faulting may account for the unexpectedly high levels of hydrothermal activity observed.  相似文献   

20.
Based on an analysis of full-cover multi-beam bathymetric data, seismic and sub-bottom profiling data, and other geological-geophysical data sets, the geomorphologic features of the Ryukyu trench-arc-backarc (T-A-BA) system are delineated, and a geomorphologic map of the system is compiled. The results show that the evolution and spatial distribution patterns of the geomorphologic types of the Ryukyu T-A-BA system are controlled mainly by tectonic movements. The tectonic geomorphologic characteristics of the Ryukyu Arc (RA) differ distinctly from those of the East China Sea (ECS) continental shelf and slope. In term of geological structures, RA consists of the Tokara volcanic ridge, the Ryukyu folded ridge, the fore-arc accretion-wedge ridge and the Amami Depression and the fore-arc depressions between the ridges, which is composed of a complex of alternating island-slope ridges and fault basins. The slope of the ECS is a passive continental margin with stepwise faults. The Okinawa Trough (OT) is a backarc rift in which tectonicmovements are intensive, with active volcanic and hydro-thermal eruptions and sea floor spreading. The development of geomorphic features of the OT is controlled by the central en echelon spreading axes, the faults along the ECS slope and the marginal faults to the west of the Tokara volcanic ridge. The geomorphic complex of the OT is arranged in the following pattern: the en echelon grabens and volcanic chains formed by rifting and spreading lie in the central part of the trough, the turbidite plains incliningwards from the slope foot of the ECS lie in the westeru-northwesteru parts of the OT, and the volcaniclastic deposit plains inclining westward-northwestwards from the western slope foot of the RA lie in the easteru-southeasteru parts of the OT. In term of tectonic geomorphology, the OT forms a natural division between the sheff of the ECS and the RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号