首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
文章采用一种基于眼睛闭合度及打呵欠来检测驾驶员疲劳的方法,在YCrCb颜色空间中利用高斯模型进行肤色检测得到人脸的区域,在人脸灰度二值化图中利用五官几何结构的先验知识粗略定位人眼,利用区域生长和形态学运算得到人眼轮廓并计算眼睛的闭合度;检测嘴唇时利用唇色最佳阈值大致确定嘴唇位置,在此基础上通过人脸灰度值特征精确定位嘴唇,然后通过嘴张开程度判断驾驶员是否打呵欠;最后基于2个特征对驾驶疲劳进行判决,实验证明这种方法对驾驶疲劳检测具有较好的效果。  相似文献   

2.
为在驾驶员佩戴眼镜的情况下也能准确有效地检测疲劳状态, 提出一种判断是否佩戴眼镜的方法, 并建 立了基于眼睛与嘴部状态的疲劳驾驶检测系统。 对该系统中有关目标检测、 特征提取与图像识别等算法进行 研究。 首先, 采用 Adaboost 算法通过人脸分类器从视频帧中检测人脸区域, 并根据面部器官几何分布规则粗检 眼睛与嘴部区域; 其次, 基于大律法自适应二值化, 采用垂直积分投影法判断是否配戴眼镜, 根据灰度直方图 统计特征值法判断戴眼镜的眼部区域状态, 另外, 利用似圆度判断嘴部打哈欠情况; 最后, 利用 PERCLOS (Percentage of Eyelid Closure over the Pupil)值识别眼睛疲劳状态, 利用打哈欠频率识别嘴部疲劳状态。 当检测 到驾驶员处于疲劳状态, 则及时给出疲劳警告。 实验结果表明, 该方法可有效解决眼镜对检测的干扰, 并适用 于不同光照与环境。 同时, 在戴眼镜情况下对于眼睛与嘴部疲劳状态的判断优于其他方法。 基本满足疲劳检 测系统对良好的实时性、 稳定性与鲁棒性等要求。  相似文献   

3.
基于机器视觉的驾驶人疲劳检测系统,通过对驾驶人眼睛动作的分析实现对驾驶人疲劳状态的估计。眼睛区域的准确定位是保证疲劳检测精度的前提条件。然而,实际行车过程中,驾驶人头部姿态随机、快速变化会造成眼睛区域定位精度的严重下降。该文在基于主动形状模型(ASM)算法实现驾驶人眼睛区域粗定位的基础上,针对ASM模型在实际检测过程中的姿态适应性较低与定位精度不高的问题,提出局部ASM模型来增强ASM算法的姿态适应性;进一步引入平均合成精确滤波器(ASEF)算法与ASM算法相结合的思路提高对眼睛区域的定位精度;同时,提出单、双眼相结合的ASEF算法来提高眼睛虹膜中心定位的鲁棒性。实验结果表明:该算法对于驾驶人头部姿态变化具有较强的适应性,能够实现眼睛区域的准确定位。  相似文献   

4.
基于面部特征的驾驶员疲劳判断是应用最广泛的方法,而眼睛睁闭程度最直接表达驾驶员的精神状态。传统的眼睛检测方法受环境、传输、头部姿态的影响,眼睛的定位精度不高,从而导致疲劳分析不准确。本文提出一种基于脸部图像灰度差进行眼睛检测的方法,正常情况下在人脸上半部只有眼睛进行睁闭的活动,故眼部区域灰度会发生变化,由此来进行标定。该方法主要包括基于adaboost算法的人脸识别、图像预处理、眼睛的检测、积分投影法计算眼睛的高宽比以及基于PERCLOS准则的驾驶员疲劳判断。最后分别基于头部左转、右转和正视三种情况下进行实验,根据结果表明该方法能够较好的进行眼睛的检测,对于进行驾驶员的疲劳判断有极大的意义。  相似文献   

5.
驾驶疲劳监测系统DDDS设计方法   总被引:1,自引:0,他引:1  
通过对各种疲劳监测方法进行比较分析,借助模拟驾驶仪器的研究成果,得出PERCLOS算法最适合评价驾驶疲劳程度.同时,提出一套基于PERCLOS和DSP处理器的驾驶疲劳监测系统总体设计方案,并设计开发出驾驶疲劳监测系统DDDS.监测系统应用图像差分的方法,采用灰度处理、膨胀、腐蚀等图像分析手段,实现准确定位并识别出驾驶员眼睛的睁开和闭合过程,通过分析眼睛闭合时间来判断疲劳程度.试验表明,DDDS系统对驾驶疲劳的检测准确率达到86.89%.  相似文献   

6.
驾驶疲劳监测系统DDDS设计方法   总被引:2,自引:0,他引:2  
通过对各种疲劳监测方法进行比较分析,借助模拟驾驶仪器的研究成果,得出PERCLOS算法最适合评价驾驶疲劳程度.同时,提出一套基于PERCLOS和DSP处理器的驾驶疲劳监测系统总体设计方案,并设计开发出驾驶疲劳监测系统DDDS.监测系统应用图像差分的方法,采用灰度处理、膨胀、腐蚀等图像分析手段,实现准确定位并识别出驾驶员眼睛的睁开和闭合过程,通过分析眼睛闭合时间来判断疲劳程度.试验表明,DDDS系统对驾驶疲劳的检测准确率达到86.89%.  相似文献   

7.
基于面部特征的驾驶员疲劳判断是应用最广泛的方法,而眼睛睁闭程度最直接表达驾驶员的精神状态。传统的眼睛检测方法受环境、传输、头部姿态的影响,眼睛的定位精度不高,从而导致疲劳分析不准确。提出一种基于脸部图像灰度差进行眼睛检测的方法:正常情况下在人脸上半部只有眼睛进行睁闭的活动,故眼部区域灰度会发生变化,由此来进行标定。该方法主要包括基于Ada Boost算法的人脸识别、图像预处理、眼睛的检测、积分投影法计算眼睛的高宽比,以及基于PERCLOS(percentage of eyelid closure)准则的驾驶员疲劳判断。最后分别基于头部左转、右转和正视三种情况下进行实验。根据结果表明该方法能够较好地进行眼睛的检测,对于进行驾驶员的疲劳判断有极大的意义。  相似文献   

8.
基于眼睛状态识别的驾驶员疲劳监测   总被引:1,自引:0,他引:1  
提出一种基于眼睛状态识别的驾驶员疲劳状态监测算法。在首帧定位人眼并在眼睛区域内提取多个具有互补性的特征,使用粒子滤波算法进行直接跟踪;在后续图像帧中利用CAMShift算法对初始检测到的人脸区域进行实时跟踪,在人脸区域中同步检测眼睛,检测结果用于粒子滤波器的后验确认和修正。在跟踪眼睛的同时检测每帧中的眼睛状态,通过连续帧中的眼睛状态判断出驾驶员精神状态。实验表明:该文算法对人脸旋转和尺度变化、摄像机抖动,以及遮挡的影响均具有较高的鲁棒性。  相似文献   

9.
介绍了几类目前常用的疲劳检测技术的优缺点,提出了一种改进的疲劳驾驶检测方法:先通过2次图像投影和形态学方法实现眼睛精确定位;再根据眼睛睁闭时,其眼睛宽高比的差异,提出一种眼睛状态的识别方法;根据PERCLOS方法的判断是否疲劳.算法能够有效减少计算量提高运算速度,并在实验室内取得了较高的精确度.  相似文献   

10.
疲劳驾驶是造成交通事故的一个重要原因。为实时有效地检测驾驶员的疲劳状态,设计了一种融合眼睛和嘴巴两种疲劳特征进行疲劳状态判定的检测算法,并构建了基于DSP人脸特征识别的司机疲劳驾驶预警系统。该算法采用"Harr特征值+Ada Boost"的方法进行人脸识别,然后根据人脸图像的灰度分布定位眼睛和嘴巴的位置,利用Hough变换,以及模板匹配技术判断出人眼的开闭状态,计算PERCOLS值作为司机疲劳驾驶的一个判断指标。除此之外,本系统还利用嘴巴的宽高比及打哈欠的持续时间来综合判定司机的疲劳状态。通过仿真测试结果表明该系统的算法准确、可行、实时性强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号