首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
为了提高焦化废水的处理效果,减轻对环境的污染,选择好氧颗粒污泥膜生物反应器处理人工模拟焦化废水,探讨了不同颗粒污泥浓度对焦化废水的处理效果及膜污染的情况。结果表明,不同颗粒污泥浓度对焦化废水的处理效果有显著差别。投加颗粒污泥后,反应器对不同颗粒污泥浓度条件下COD、NH3-N、苯酚、TP的去除效果不同。好氧颗粒污泥内部缺氧和厌氧环境下,反应器中的好氧颗粒污泥质量分数为100%时对COD去除率为99.17%、NH3-N去除率为95.00%、苯酚去除率为99.90%、TP去除率为85.22%。同时,比较了不同颗粒污泥浓度下反应器运行中膜通量的变化趋势及膜表面的变化情况。颗粒污泥投加量的不同对膜污染的抑制作用也不同。颗粒污泥使膜污染减轻,膜通量恢复率升高。  相似文献   

2.
利用特制高功率超声波发生器对某维生素C制造厂的污水及污泥进行处理,研究超声波对难降解有机废水好氧生化降解效率及污泥减量化的影响.结果表明:特制超声波发生器对好氧接触氧化池进水进行高功率较长时间(2 860 W,5 min)超声处理,可去除56%的COD,B/C比从0.13提高到0.22;对推流式曝气池进水进行超声(2 860 W,2 min)处理,可去除33%的COD,B/C比提高一倍以上(从0.11提高到0.23);并且超声处理降低了接触氧化池之后的二沉池剩余污泥的沉降体积,促进了污泥井中混合剩余污泥中某些易被生化降解的物质由固相转移到液相,进而达到污泥减量化的目的.  相似文献   

3.
本文在3套结构相同的SBR反应器中,利用人工配制的模拟废水,接种污水厂二沉池的絮状活性污泥培养好氧颗粒污泥,探讨了不同污泥沉降时间对SBR反应器中好氧颗粒污泥形成时间和性质的影响。在培养过程中通过监测出水COD、NH4+—N,分析了三个反应器内污泥颗粒化过程中的生物降解能力的变化情况。实验过程中还通过显微镜下观察到的不同时期污泥图片研究了不同沉降时间影响下好氧颗粒污泥形成过程差异。  相似文献   

4.
以模拟华南地区的城镇污水研究对象,开展了污泥回流比对双污泥BCR反硝化除磷的影响研究. 结果表明:使超越污泥和回流污泥的回流比分别控制为0.6、0.4和0.2时, BCR工艺对COD去除率的均值分别为89.98%、89.48%和82.38%,出水COD平均质量浓度分别为20.94 、21.67 、37.66 mg/L;而总氮的去除率均值则分别为79.94%、80.58%和65.47%,出水总氮平均质量浓度分别为5.72 、5.75 、10.85mg/L;总磷去除率的均值分别为88.81%、91.64%和77.06%,出水总磷质量浓度均值为0.76 、0.59 、1.62mg/L,新工艺改善了传统双污泥连续流工艺出水NH4+-N质量浓度偏高的缺陷. 工艺在超越污泥回流比和回流污泥回流比均是0.4时处理效果最佳. 由于好氧硝化池与中沉池合建,好氧硝化池中的NO3--N与中沉池中的DPB接触而发生反硝化吸磷的反应而使部分总磷在好氧硝化池中被去除.  相似文献   

5.
采用具有污泥减量化功能的菌株,对柠檬酸发酵废水生化处理二沉池剩余污泥进行摇瓶减量实验。通过对初筛菌株进行定向驯化,再通过正交试验与单因素实验,确定菌株污泥处理优化培养条件后进行优选菌株污泥最终处理。研究结果表明:经过4个周期的驯化,菌株W1-6、W1-10好氧处理后污泥MLSS减量与同期对照相比分别从17.62%提高到24.61%和从16.60%提高到23.17%。在优化培养条件下,污泥MLSS与MLVSS分别减量27%和40%以上,污泥清液中SCOD值从521.7mg/L提高到1700mg/L左右,原污泥91%的SV30可降低到54%~57%。污泥减量效果明显,同时污泥脱水性能也得到明显改善。  相似文献   

6.
试验采用水解酸化接好氧工艺处理石化废水 ,水解酸化池停留时间 1 5h ,后接 1 0h左右的好氧处理 ,COD去除率可以达到 90 %以上 ,BOD去除率达到 90 %以上 .通过考察水解酸化 -好氧系统对CODCr、BOD5的去除效果 ,分析了系统中COD、BOD去除情况 ,并分析了污泥具有良好絮凝沉降性能的原因  相似文献   

7.
以某年产110万吨焦炭的独立焦化企业为例,进行了全厂废水零排放措施和可行性研究。经过处理后的净水用于煤气净化循环水系统补充水,少量浓水用于干熄焦检修时低水分熄焦补充水。  相似文献   

8.
一株多环芳烃降解菌在焦化废水降解中的应用研究   总被引:7,自引:1,他引:6  
为了提高焦化废水的生物降解率,以萘普惟一碳源分离出1株细菌CN3d。降解萘、吡啶、菲、芘时,其降解率分别达到93.0%、90.0%、99.0%和72.5%。纯培养的CN3d对焦化废水的降解率为33.6%,将其投加于活性污泥,降解率达到51.8%。鉴定CN3d为黄杆菌属(Flavobacterium)。将葡萄糖和FeCl3加入改良污泥,焦化废水的最大降解率达到55.0%,这时若将焦化废水稀释至原浓度的1/2,降解率可达70.2%。试验结果表明,CN3d对焦化废水有降解潜力,改善降解条件有利于提高投菌法的降解率。  相似文献   

9.
在油田普遍采用聚合物驱三次采油新技术的同时也产生了含聚丙烯酰胺(PAM)污水的处理问题。含PAM污水的特点是粘度大、含油多、乳化油稳定,故传统的废水处理方法及设施难以使该污水处理达到回注水水质的标准。对模拟含聚废水驯化的好氧颗粒污泥内微生物的研究将有助于油田含聚废水生物处理技术的开发。采用人工模拟油田含聚废水在实验室内驯化好氧颗粒污泥,结果表明好氧颗粒污泥对含聚驱采出水有良好的适应性。在水力停留时间为144h时,好氧颗粒污泥可以将进水中的聚丙烯酰胺由350mg/L降低至150mg/L,去除率达到57%。对颗粒污泥内的优势微生物研究表明,在模拟含聚废水中对PAM起主要降解作用的微生物为产碱假单胞菌。  相似文献   

10.
根据甘蔗制糖业废水排放量大,化学需氧量(COD)浓度高,成分复杂,废水处理难度大的实际情况,设计甘蔗制糖废水的ABR-CASS处理工艺。处理工艺先将废水依靠高程差流至ABR水解池,由水解池内的厌氧和兼氧混合菌群进行水解酸化处理后,流至CASS池进行推流式活性污泥法好氧生物处理,去除有机物质。甘蔗制糖废水经过该工艺处理后COD、BOD5、SS、NH3-N去除率分别是98%,99.4%,86.0%,96.0%,出水达到制糖工业水污染物排放标准。该工艺对处理甘蔗制糖废水具有启动快、运行稳定、出水水质好等优点,具有良好的环境效益和社会经济效益。  相似文献   

11.
在新建的大型城市污水处理厂,生物启动时,不投加生物种泥,在不同时段,采用不同流量的连续进水,通过调整曝气池溶解氧来培养其活性污泥,20 d后,曝气池的污泥悬浮质量浓度(MLSS)可稳定在2 500 mg/L左右,且其活性良好,二沉池出水化学需氧量(COD)小于60 mg/L,总磷(TP)小于1.0 mg/L.  相似文献   

12.
焦化废水制备的煤泥水煤浆的成浆性   总被引:2,自引:0,他引:2  
针对焦化废水中污染物浓度高、难以处理的现状,利用蒸氨废水和煤泥制备水煤浆,并与自来水、不同处理阶段的焦化废水制备的煤泥浆进行对比,分析煤泥水煤浆的成浆性。结果表明:蒸氨废水与煤泥制备的水煤浆的稳定性、流变性、发热量均优于自来水,且前者添加剂用量比后者减少0.4个百分点;焦化废水中酚类物质和氨氮对煤泥的成浆性有一定的分散稳定作用;添加剂用量一定时,厌氧池出口水样与煤泥制备的浆体的流变性最优。该研究为焦化废水的回收利用提供了参考。  相似文献   

13.
 为强化A2/O低温污水处理系统的除磷效能,在好氧工艺段后增设了厌氧释磷池,并对其运行控制参数进行了探讨.研究表明,二沉池好氧污泥的厌氧释磷有效提高了低温A2/O系统的总磷去除率,同时对COD的去除效能也得到了提高.为满足厌氧释磷对碳源的需求,可引入原水与二沉池新鲜污泥以体积比1:1混合,适宜的污泥负荷为0.015-0.02g COD/g MLSS.对于间歇运行工艺,适宜的释磷反应时间为14h,而在连续流工艺中,应控制污泥停留时间为12h.NO3-对好氧污泥的厌氧释磷有显著抑制作用,以不大于5mg/L为宜.为提高污泥厌氧释磷的效率,可采用间歇式缓慢搅拌.  相似文献   

14.
焦化废水预处理技术的应用与展望   总被引:5,自引:0,他引:5  
焦化废水是煤制焦炭,煤气净化及焦化产品回收过程中产生的废水,其成分复杂多变,因此应尽可能在生化处理前降低其浓度或改变其分子结构,提高废水的可生化性。介绍了焦化废水预处理过程中所用的技术和方法,并对焦化废水预处理技术的应用前景进行了展望。  相似文献   

15.
探讨利用膜生物反应器(MBR)处理丁基黄药(简称黄药)废水时的启动期及好氧活性污泥驯化过程的运行特征,分析其好氧活性污泥的形成过程、形态特征、性质及对污染物的去除机制.以啤酒污水处理曝气池污泥为接种污泥,以乙酸钠和黄药为碳源,培养及驯化絮体污泥.结果表明,MBR系统经过35 d启动及驯化即可达到正常运行状态,絮体污泥的SVI为100 mL/g,MLVSS/MLSS为0.75,生物量大且沉降性良好,COD及黄药去除率分别可以达到80%和90%.絮体污泥的形成及膜的高效截留增强了MBR运行的稳定性,为黄药废水的高效降解提供了保证.  相似文献   

16.
为改良活性污泥性能,采用生物强化技术,在含食品废水的污水处理厂曝气池中投加具有高效降解蛋白质、脂肪、苯胺的复合微生物菌剂(由异养硝化-好氧反硝化菌株以及反硝化聚磷菌组成),有效降低出水总氮(TN)、氨氮(NH3-N)、COD,使其水质稳定达到《城镇污水处理厂污染物排放标准》中规定的一级 A标准。实验结果表明:于曝气池投加复合菌剂后,出水水质有了很明显提升,二沉池出水TN去除率达到93.48%,在原有基础上提高近70%;NH3-N去除率达83.15%,在原有基础上提高60%以上;COD去除率达到91.40%。在复配菌剂生长成熟并和曝气池内土著微生物形成共生菌群后,停止加菌2个月,并在此期间控制回流污泥,从而将生化池中污泥质量浓度持续降低(从9000mg/L降低到6000mg/L左右)。最终系统TN、NH3-N、COD能够稳定达到GB18918—2002规定的一级 A标准,大大减少了原系统运行能耗。  相似文献   

17.
 采用升流式厌氧污泥床(UASB)反应器,以城市污水处理厂二沉池活性污泥为种泥,研究好氧絮状污泥的厌氧颗粒化过程及其机制.UASB在污泥负荷(SLR)0.25kg(COD)/(kg(VSS)·d)和水力负荷(HLR)0.1m3/(m2·h)的条件下启动后,通过分阶段缩短水力停留时间(HRT)的方式逐步将SLR和HLR提高到0.52kg(COD)/(kg(VSS)·d)和0.3m3/m2·h,经过150d的连续运行,成功培育出了厌氧颗粒污泥,系统对COD的去除率达到了95%以上.厌氧颗粒污泥的形成过程先后经历了污泥驯化期、微生物聚集体形成期、初生颗粒污泥形成期、次生颗粒污泥形成期、成熟颗粒污泥形成期5个时期.好氧絮状污泥的厌氧颗粒化机制整体上符合二次核学说,其中初生颗粒污泥的形成符合黏液学说,而次生颗粒污泥的形成机制与目前已报道的厌氧颗粒污泥形成机制不同,其内核是由初生颗粒污泥破碎后的碎片组成,产甲烷丝状菌和其他细菌通过插入碎片中或者附着于碎片表面的方式形成聚集体,并逐渐发展成为次生颗粒污泥.  相似文献   

18.
流体力化学-二次流原理在污泥颗粒化中的研究前景   总被引:1,自引:0,他引:1  
颗粒污泥形成受多种因素的影响,通过在流体中添加适量剂量的絮凝剂,利用流体力化学-二次流原理,施加合适的流体剪切力,形成合理的二次流场,可以在很短的时间内形成原始颗粒污泥.利用污泥内部和水中的微生物,通过好气或厌气培养,能加快(好氧或厌氧)颗粒污泥的形成,是加快颗粒污泥培养的有效途径,在污水处理生产应用中具有广阔的前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号