首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M J Miserendino  C B Sananes  K R Melia  M Davis 《Nature》1990,345(6277):716-718
Receptors for N-methyl-D-aspartate (NMDA) seem to have a critical role in synaptic plasticity. NMDA antagonists (such as AP5) prevent induction of long-term potentiation, an activity-dependent enhancement of synaptic efficacy mediated by neural mechanisms that might also underlie learning and memory. They also attenuate memory formation in several behavioural tasks; there are few data, however, implicating an NMDA-sensitive measure of conditioning based on local infusion of antagonists into a brain area tightly coupled to the behavioural response used to assess conditioning. We now show that NMDA antagonists infused into the amygdala block the acquisition, but not the expression, of fear conditioning measured with a behavioural assay mediated by a defined neural circuit (fear-potentiation of the acoustic startle reflex). This effect showed anatomical and pharmacological specificity, and was not attributable to reduced salience of the stimuli of light or shock used in training. The data indicate that an NMDA-dependent process in the amygdala subserves associative fear conditioning.  相似文献   

2.
3.
Genetic enhancement of learning and memory in mice.   总被引:118,自引:0,他引:118  
Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.  相似文献   

4.
Dubnau J  Grady L  Kitamoto T  Tully T 《Nature》2001,411(6836):476-480
Surgical, pharmacological and genetic lesion studies have revealed distinct anatomical sites involved with different forms of learning. Studies of patients with localized brain damage and work in rodent model systems, for example, have shown that the hippocampal formation participates in acquisition of declarative tasks but is not the site of their long-term storage. Such lesions are usually irreversible, however, which has limited their use for dissecting the temporal processes of acquisition, storage and retrieval of memories. Studies in bees and flies have similarly revealed a distinct anatomical region of the insect brain, the mushroom body, that is involved specifically in olfactory associative learning. We have used a temperature-sensitive dynamin transgene, which disrupts synaptic transmission reversibly and on the time-scale of minutes, to investigate the temporal requirements for ongoing neural activity during memory formation. Here we show that synaptic transmission from mushroom body neurons is required during memory retrieval but not during acquisition or storage. We propose that the hebbian processes underlying olfactory associative learning reside in mushroom body dendrites or upstream of the mushroom body and that the resulting alterations in synaptic strength modulate mushroom body output during memory retrieval.  相似文献   

5.
海马是完成学习与记忆活动的神经基础,海马部位突触可塑性增强与学习记忆有着密不可分的关系,而这种可塑性的增强主要是以谷氨酸为神经递质的,因此本文就有关海马部位突触可塑性增强与离子型谷氨酸受体的联系进行了阐述.  相似文献   

6.
Remondes M  Schuman EM 《Nature》2004,431(7009):699-703
A dialogue between the hippocampus and the neocortex is thought to underlie the formation, consolidation and retrieval of episodic memories, although the nature of this cortico-hippocampal communication is poorly understood. Using selective electrolytic lesions in rats, here we examined the role of the direct entorhinal projection (temporoammonic, TA) to the hippocampal area CA1 in short-term (24 hours) and long-term (four weeks) spatial memory in the Morris water maze. When short-term memory was examined, both sham- and TA-lesioned animals showed a significant preference for the target quadrant. When re-tested four weeks later, sham-lesioned animals exhibited long-term memory; in contrast, the TA-lesioned animals no longer showed target quadrant preference. Many long-lasting memories require a process called consolidation, which involves the exchange of information between the cortex and hippocampus. The disruption of long-term memory by the TA lesion could reflect a requirement for TA input during either the acquisition or consolidation of long-term memory. To distinguish between these possibilities, we trained animals, verified their spatial memory 24 hours later, and then subjected trained animals to TA lesions. TA-lesioned animals still exhibited a deficit in long-term memory, indicating a disruption of consolidation. Animals in which the TA lesion was delayed by three weeks, however, showed a significant preference for the target quadrant, indicating that the memory had already been adequately consolidated at the time of the delayed lesion. These results indicate that, after learning, ongoing cortical input conveyed by the TA path is required to consolidate long-term spatial memory.  相似文献   

7.
P K Stanton  T J Sejnowski 《Nature》1989,339(6221):215-218
A brief, high-frequency activation of excitatory synapses in the hippocampus produces a long-lasting increase in synaptic strengths called long-term potentiation (LTP). A test input, which by itself does not have a long-lasting effect on synaptic strengths, can be potentiated through association when it is activated at the same time as a separate conditioning input. Neural network modelling studies have also predicted that synaptic strengths should be weakened when test and conditioning inputs are anti-correlated. Evidence for such heterosynaptic depression in the hippocampus has been found for inputs that are inactive or weakly active during the stimulation of a conditioning input, but this depression does not depend on any pattern of test input activity and does not seem to last as long as LTP. We report here an associative long-term depression (LTD) in field CA1 that is produced when a low-frequency test input is negatively correlated in time with a high-frequency conditioning input. LTD of synaptic strength is also produced by activating presynaptic terminals while a postsynaptic neuron is hyperpolarized. This confirms theoretical predictions that the mechanism for associative LTD is homosynaptic and follows a hebbian covariance rule.  相似文献   

8.
9.
Mori M  Abegg MH  Gähwiler BH  Gerber U 《Nature》2004,431(7007):453-456
The hippocampus, a brain structure essential for memory and cognition, is classically represented as a trisynaptic excitatory circuit. Recent findings challenge this view, particularly with regard to the mossy fibre input to CA3, the second synapse in the trisynaptic pathway. Thus, the powerful mossy fibre input to CA3 pyramidal cells might mediate both synaptic excitation and inhibition. Here we show, by recording from connected cell pairs in rat entorhinal-hippocampal slice cultures, that single action potentials in a dentate granule cell evoke a net inhibitory signal in a pyramidal cell. The hyperpolarization is due to disynaptic feedforward inhibition, which overwhelms monosynaptic excitation. Interestingly, this net inhibitory synaptic response changes to an excitatory signal when the frequency of presynaptic action potentials increases. The process responsible for this switch involves the facilitation of monosynaptic excitatory transmission coupled with rapid depression of inhibitory circuits. This ability to immediately switch the polarity of synaptic responses constitutes a novel synaptic mechanism, which might be crucial to the state-dependent processing of information in associative hippocampal networks.  相似文献   

10.
W Müller  J A Connor 《Nature》1991,354(6348):73-76
The possibility that postsynaptic spines on neuronal dendrites are discrete biochemical compartments for Ca(2+)-activated processes involved in synaptic plasticity is a widely proposed concept that has eluded experimental demonstration. Using microfluorometry on CA3 neurons in hippocampal slices, we show here that with weak presynaptic stimulation of associative/commissural fibres, Ca2+ accumulates in single postsynaptic spines but not in the parent dendrite. Stronger stimulation also promotes changes in dendrites. The NMDA-receptor antagonist AP-5 blocks changes in Ca2+ in spines. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, develop with repeated stimulation. The observed compartmentalization allows for the specificity, cooperativity and associativity displayed by memory models such as long-term potentiation.  相似文献   

11.
I Mody  U Heinemann 《Nature》1987,326(6114):701-704
In the mammalian central nervous system, receptors for the excitatory amino-acid neurotransmitters are divided into three subtypes depending on their sensitivity to three specific agonists: kainate, quisqualate and N-methyl-D-aspartate (NMDA). The ionophores operated by NMDA are gated by Mg2+ in a voltage-dependent manner and allow passage of several cations, including Ca2+ which may be important in plastic alterations of neuronal excitability. Indeed, specific antagonists of NMDA receptors effectively block spatial learning, long-term potentiation and some animal models of chronic epilepsy. Despite their abundance on central neurons, NMDA receptors, with a few noteworthy exceptions, do not generally seem to be involved in low-frequency synaptic transmission. Here we report for the first time that NMDA receptors of the dentate gyrus, where they do not normally contribute to the generation of synaptic potentials, become actively involved in synaptic transmission following long-lasting neuronal changes induced by daily electrical stimulation (kindling) of the amygdala or hippocampal commissures. In contrast to controls, the excitatory postsynaptic potentials (e.p.s.ps) of granule cells in hippocampal slices obtained from kindled animals displayed characteristics typical of an NMDA-receptor-mediated component. The involvement of NMDA receptors in synaptic transmission may underlie the long-lasting changes in neuronal function induced by kindling.  相似文献   

12.
Long-term potentiation (LTP) in the hippocampus is widely studied as the mechanisms involved in its induction and maintenance are believed to underlie fundamental properties of learning and memory in vertebrates. Most synapses that exhibit LTP use an excitatory amino-acid neurotransmitter that acts on two types of receptor, the N-methyl-D-aspartate (NMDA) and quisqualate receptors. The quisqualate receptor mediates the fast synaptic response evoked by low-frequency stimulation, whereas the NMDA receptor system is activated transiently by tetanic stimulation, leading to the induction of LTP. The events responsible for maintaining LTP once it is established are not known. We now demonstrate that the sensitivity of CA1 neurons in hippocampal slices to ionophoretically-applied quisqualate receptor ligands slowly increases following the induction of LTP. This provides direct evidence for a functional post-synaptic change and suggests that pre-synaptic mechanisms also contribute, but in a temporally distinct manner, to the maintenance of LTP.  相似文献   

13.
R G Morris  E Anderson  G S Lynch  M Baudry 《Nature》1986,319(6056):774-776
Recent work has shown that the hippocampus contains a class of receptors for the excitatory amino acid glutamate that are activated by N-methyl-D-aspartate (NMDA) and that exhibit a peculiar dependency on membrane voltage in becoming active only on depolarization. Blockade of these sites with the drug aminophosphonovaleric acid (AP5) does not detectably affect synaptic transmission in the hippocampus, but prevents the induction of hippocampal long-term potentiation (LTP) following brief high-frequency stimulation. We now report that chronic intraventricular infusion of D,L-AP5 causes a selective impairment of place learning, which is highly sensitive to hippocampal damage, without affecting visual discrimination learning, which is not. The L-isomer of AP5 did not produce behavioural effects. AP5 treatment also suppressed LTP in vivo. These results suggest that NMDA receptors are involved in spatial learning, and add support to the hypothesis that LTP is involved in some, but not all, forms of learning.  相似文献   

14.
Day M  Langston R  Morris RG 《Nature》2003,424(6945):205-209
Paired-associate learning is often used to examine episodic memory in humans. Animal models include the recall of food-cache locations by scrub jays and sequential memory. Here we report a model in which rats encode, during successive sample trials, two paired associates (flavours of food and their spatial locations) and display better-than-chance recall of one item when cued by the other. In a first study, pairings of a particular foodstuff and its location were never repeated, so ensuring unique 'what-where' attributes. Blocking N-methyl-d-aspartate receptors in the hippocampus--crucial for the induction of certain forms of activity-dependent synaptic plasticity--impaired memory encoding but had no effect on recall. Inactivating hippocampal neural activity by blocking alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors impaired both encoding and recall. In a second study, two paired associates were trained repeatedly over 8 weeks in new pairs, but blocking of hippocampal AMPA receptors did not affect their recall. Thus we conclude that unique what-where paired associates depend on encoding and retrieval within a hippocampal memory space, with consolidation of the memory traces representing repeated paired associates in circuits elsewhere.  相似文献   

15.
脑室注射海人酸对大白鼠学习记忆行为的影响   总被引:1,自引:0,他引:1  
大白鼠脑室注射海人酸(KA)5天后,检查被动回避行为和脑组织学变化。发现受注射一侧海马的背側CA3a分区锥体细胞破坏,对长时记忆,特别是长时记忆形成能力有严重损害,对学习和短时记忆无明显影响。增大KA剂量,对锥体细胞的破坏范围也扩大,能波及CA3,CA4和CAl区锥体细胞,双侧注射KA,两侧海马的背侧锥体细胞都有损毁,但对学习记忆行为的损害程度并不增高。这些结果提示,海马背侧CA3a分区锥体细胞在被动回避反应行为的长时记忆形成中有重要意义;长时记忆与学习和短时记忆的形成,在海马结构中可能有不同的神经基础,脑室注射KA后2月,海马锥体细胞的破坏仍未见恢复,长时记忆形成能力的受损亦未能代偿。本文还讨论了海马CA3影响长时记忆过程的可能神经机理。  相似文献   

16.
NMDA application potentiates synaptic transmission in the hippocampus   总被引:13,自引:0,他引:13  
J A Kauer  R C Malenka  R A Nicoll 《Nature》1988,334(6179):250-252
The NMDA (N-methyl-D-aspartate) class of glutamate receptor plays a critical role in a variety of forms of synaptic plasticity in the vertebrate central nervous system. One extensively studied example of plasticity is long-term potentiation (LTP), a remarkably long-lasting enhancement of synaptic efficiency induced in the hippocampus by brief, high-frequency stimulation of excitatory synapses. LTP is a strong candidate for a cellular mechanism of learning and memory. The site of LTP induction appears to be the postsynaptic cell and induction requires both activation of NMDA receptors by synaptically released glutamate and depolarization of the postsynaptic membrane. It is proposed that this depolarization relieves a voltage-dependent Mg2+ block of the NMDA receptor channel, resulting in increased calcium influx which is the trigger for the induction of LTP. This model predicts that application of a large depolarizing dose of NMDA should be sufficient to evoke LTP. In agreement with a previous study, we have found that NMDA or glutamate application does potentiate synaptic transmission in the hippocampus. This agonist-induced potentiation is, however, decremental and short-lived, unlike LTP. It is occluded shortly after the induction of LTP and a similar short-term potentiation can be evoked by synaptically released glutamate. We thus propose that LTP has two components, a short-term, decremental component which can be mimicked by NMDA receptor activation, and a long-lasting, non-decremental component which, in addition to requiring activation of NMDA receptors, requires stimulation of presynaptic afferents.  相似文献   

17.
Potentiation of synaptic transmission in the hippocampus by phorbol esters   总被引:39,自引:0,他引:39  
R C Malenka  D V Madison  R A Nicoll 《Nature》1986,321(6066):175-177
Protein kinase C (PKC), a calcium-dependent phospholipid-sensitive kinase which is selectively activated by phorbol esters, is thought to play an important role in several cellular processes. In mammalian brain PKC is present in high concentrations and has been shown to phosphorylate several substrate phosphoproteins, one of which may be involved in the generation of long-term potentiation (LTP), a long-lasting increase in synaptic efficacy evoked by brief, high-frequency stimulation. Since the hippocampus contains one of the brain's highest levels of binding sites for phorbol esters and is the site where LTP has been most thoroughly characterized, we examined the effects of phorbol esters on hippocampal synaptic transmission and LTP. We found that phorbol esters profoundly potentiate excitatory synaptic transmission in the hippocampus in a manner that appears indistinguishable from LTP. Furthermore, after maximal synaptic enhancement by phorbol esters, LTP can no longer be elicited. Although the site of synaptic enhancement during LTP is not clearly established, phorbol esters appear to potentiate synaptic transmission by acting primarily at a presynaptic locus since changes in the postsynaptic responses to the putative transmitter, glutamate, cannot account for the increased synaptic responses induced by phorbol esters. These findings, in conjunction with previous biochemical studies, raise the possibility that, in mammalian brain, PKC plays a role in controlling the release of neurotransmitter and may be involved in the generation of LTP.  相似文献   

18.
A Artola  S Br?cher  W Singer 《Nature》1990,347(6288):69-72
In the hippocampus and neocortex, high-frequency (tetanic) stimulation of an afferent pathway leads to long-term potentiation (LTP) of synaptic transmission. In the hippocampus it has recently been shown that long-term depression (LTD) of excitatory transmission can also be induced by certain combinations of synaptic activation. In most hippocampal and all neocortical pathways studied so far, the induction of LTP requires the activation of N-methyl-D-aspartate (NMDA) receptor-gated conductances. Here we report that LTD can occur in neurons of slices of the rat visual cortex and that the same tetanic stimulation can induce either LTP or LTD depending on the level of depolarization of the postsynaptic neuron. By applying intracellular current injections or pharmacological disinhibition to modify the depolarizing response of the postsynaptic neuron to tetanic stimulation, we show that the mechanisms of induction of LTD and LTP are both postsynaptic. LTD is obtained if postsynaptic depolarization exceeds a critical level but remains below a threshold related to NMDA receptor-gated conductances, whereas LTP is induced if this second threshold is reached.  相似文献   

19.
The neural computations used to represent olfactory information in the brain have long been investigated. Recent studies in the insect antennal lobe suggest that precise temporal and/or spatial patterns of activity underlie the recognition and discrimination of different odours, and that these patterns may be strengthened by associative learning. It remains unknown, however, whether these activity patterns persist when odour intensity varies rapidly and unpredictably, as often occurs in nature. Here we show that with naturally intermittent odour stimulation, spike patterns recorded from moth antennal-lobe output neurons varied predictably with the fine-scale temporal dynamics and intensity of the odour. These data support the hypothesis that olfactory circuits compensate for contextual variations in the stimulus pattern with high temporal precision. The timing of output neuron activity is constantly modulated to reflect ongoing changes in stimulus intensity and dynamics that occur on a millisecond timescale.  相似文献   

20.
Interaction with the NMDA receptor locks CaMKII in an active conformation.   总被引:29,自引:0,他引:29  
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号