首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Quantum mechanics is a theory whose foundations spark controversy to this day. Although many attempts to explain the underpinnings of the theory have been made, none has been unanimously accepted as satisfactory. Fuchs has recently claimed that the foundational issues can be resolved by interpreting quantum mechanics in the light of quantum information. The view proposed is that quantum mechanics should be interpreted along the lines of the subjective Bayesian approach to probability theory. The quantum state is not the physical state of a microscopic object. It is an epistemic state of an observer; it represents subjective degrees of belief about outcomes of measurements. The interpretation gives an elegant solution to the infamous measurement problem: measurement is nothing but Bayesian belief updating in a analogy to belief updating in a classical setting. In this paper, we analyze an argument that Fuchs gives in support of this latter claim. We suggest that the argument is not convincing since it rests on an ad hoc construction. We close with some remarks on the options left for Fuchs’ quantum Bayesian project.  相似文献   

2.
In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule pk=|ψk|2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129–3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415–438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism—the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]—I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.  相似文献   

3.
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.  相似文献   

4.
5.
In this paper I critically evaluate the justification of the von Neumann–Lüders projection postulate for state changes in projective measurement contexts from the objective quantum Bayesian perspective. I point out that the justification provided so far for the von Neumann–Lüders projection postulate is insufficient. I argue that the best way to correct this problem is to make an assumption, Benign Realism, which is contradictory to the objective quantum Bayesian interpretation of quantum states.  相似文献   

6.
7.
Everett׳s interpretation of quantum mechanics was proposed to avoid problems inherent in the prevailing interpretational frame. It assumes that quantum mechanics can be applied to any system and that the state vector always evolves unitarily. It then claims that whenever an observable is measured, all possible results of the measurement exist. This notion of multiplicity has been understood in different ways by proponents of Everett׳s theory. In fact the spectrum of opinions on various ontological questions raised by Everett׳s approach is rather large, as we attempt to document in this critical review. We conclude that much remains to be done to clarify and specify Everett׳s approach.  相似文献   

8.
A stability condition for Bayesian statistical inference, which Redei [(1992). When can non-commutative statistical inference be Bayesian? International Studies in the Philosophy of Science, 6, 129–132; (1998). Quantum logic in algebraic approach. Dordrecht: Kluwer Academic Publishers] formulated as a rationality constraint holding in classical probability theory, is shown to fail in quantum mechanics. That allegedly challenges a Bayesian interpretation of quantum probabilities. In this paper we demonstrate that Redei's argument does not apply to quantum mechanics. Moreover, we provide a solution to the problem of Bayesian noncommutative statistical inference arising from the violation of stability condition in general probability spaces.  相似文献   

9.
The aim of this paper is to analyze the modal-Hamiltonian interpretation of quantum mechanics in the light of the Galilean group. In particular, it is shown that the rule of definite-value assignment proposed by that interpretation has the same properties of Galilean covariance and invariance as the Schrödinger equation. Moreover, it is argued that, when the Schrödinger equation is invariant, the rule can be reformulated in an explicitly invariant form in terms of the Casimir operators of the Galilean group. Finally, the possibility of extrapolating the rule to quantum field theory is considered.  相似文献   

10.
During the last 10 years or so, derivations of the Born rule based on decision theory have been proposed and developed, and it is claimed that these are valid in the context of the Everett interpretation. This claim is critically assessed and it is shown that one of its key assumptions is a natural consequence of the principles underlying the Copenhagen interpretation, but constitutes a major additional postulate in an Everettian context. It is further argued that the Born rule, in common with any interpretation that relates outcome likelihood to the expansion coefficients connecting the wavefunction with the eigenfunctions of the measurement operator, is incompatible with the purely unitary evolution assumed in the Everett interpretation.  相似文献   

11.
I argue that Deutsch׳s model for the behavior of systems traveling around closed timelike curves (CTCs) relies implicitly on a substantive metaphysical assumption. Deutsch is employing a version of quantum theory with a significantly supplemented ontology of parallel existent worlds, which differ in kind from the many worlds of the Everett interpretation. Standard Everett does not support the existence of multiple identical copies of the world, which the D-CTC model requires. This has been obscured because he often refers to the branching structure of Everett as a “multiverse”, and describes quantum interference by reference to parallel interacting definite worlds. But he admits that this is only an approximation to Everett. The D-CTC model, however, relies crucially on the existence of a multiverse of parallel interacting worlds. Since his model is supplemented by structures that go significantly beyond quantum theory, and play an ineliminable role in its predictions and explanations, it does not represent a quantum solution to the paradoxes of time travel.  相似文献   

12.
13.
14.
We defend the many-worlds interpretation of quantum mechanics (MWI) against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning symmetry and locality. We also show how a structurally similar proof of the Born rule is available for collapse theories. We conclude by comparing our account to the recent account offered by Sebens and Carroll.  相似文献   

15.
Complementarity has frequently, but mistakenly, been conflated with wave-particle duality, and this conflation has led to pervasive misunderstandings of Bohr's views and several misguided claims of an experimental “disproof” of complementarity. In this paper, I explain what Bohr meant by complementarity, and how this is related to, but distinct from, wave-particle duality. I list a variety of possible meanings of wave-particle duality, and canvass the ways in which they are (or are not) supported by quantum physics and Bohr's interpretation. I also examine the extent to which wave-particle duality should be viewed as an example of the sort of dualities one finds in, e.g., string theory. I argue that the most fruitful way of reading of Bohr's account complementarity is by comparing it to current accounts of effective theories with limited domains of applicability.  相似文献   

16.
We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the non-probabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability rule in the many worlds theory. Our conclusion is that the many worlds theory fails to account for the probabilistic statements of standard (collapse) quantum mechanics.  相似文献   

17.
18.
Objectiveprobability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett's seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation of Everettian theory and to a novel explanation of why a principle of indifference does not apply to self-location uncertainty for a post-measurement, pre-observation subject, just as Sebens and Carroll claim. Their Epistemic Separability Principle is shown to arise out of this explanation and the derivation of the Born rule for Everettian theory is thereby put on a firmer footing.  相似文献   

19.
In a previous paper [Hemmo, M & Shenker, O (2003). Quantum decoherence and the approach to equilibrium I. Philosophy of Science, 70, 330–358] we discussed a recent proposal by Albert [(2000). Time and chance. Cambridge, MA: Harvard University Press. Chapter 7] to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the quantum state of [Ghirardi, G, Rimini, A and Weber, T., (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review, D 34, 470–479]. We proposed an alternative way to explain thermodynamics within no collapse interpretations of quantum mechanics. In this paper some difficulties faced by both approaches are discussed and solved: the spin echo experiments, and the problem of extremely light gases. In these contexts, we point out several ways in which the above quantum mechanical approaches as well as some other classical approaches to the foundations of statistical mechanics may be distinguished experimentally.  相似文献   

20.
Textbooks present classical particle and field physics as theories of physical systems situated in Newtonian absolute space. This absolute space has an influence on the evolution of physical processes, and can therefore be seen as a physical system itself; it is substantival. It turns out to be possible, however, to interpret the classical theories in another way. According to this rival interpretation, spatiotemporal position is a property of physical systems, and there is no substantival spacetime. The traditional objection that such a relationist view could not cope with the existence of inertial effects and other manifestations of the causal efficacy of spacetime can be answered successfully. According to the new point of view, the spacetime manifold of classical physics is a purely representational device. It represents possible locations of physical objects or events; but these locations are physical properties inherent in the physical objects or events themselves and having no existence independently of them. In relativistic quantum field theory the physical meaning of the spacetime manifold becomes even less tangible. Not only does the manifold lose its status as a substantival container, but also its function as a representation of spacetime properties possessed by physical systems becomes problematic. ‘Space and time’ become ordering parameters in the web of properties of physical systems. They seem to regain their traditional meaning only in the non-relativistic limit in which the classical particle concept becomes approximately applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号